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Abstract

This dissertation describes research into image processing techniques that en-

hance military operational and support activities. The research extends existing

work on image registration by introducing a novel method that exploits local correla-

tions to improve the performance of projection-based image registration algorithms.

The algorithm is shown to operate in low signal-to-noise ratio (SNR) conditions

and to significantly improve registration performance by as much as a factor of 5.5

in mean-squared error over existing projection-based registration algorithms at a

minimal computational cost.

The dissertation also extends the bounds on image registration performance for

both projection-based and full-frame image registration algorithms and extends the

Barankin Bound from the one-dimensional case to the problem of two-dimensional

image registration. The Cramer-Rao and Barankin bounds are calculated for regis-

tration performed using 2-D registration algorithms and compared to bounds on reg-

istration estimates calculated using computationally efficient projection-based reg-

istration algorithms. It is demonstrated that in some instances, the Cramer-Rao

lower bound is an overly-optimistic predictor of image registration performance and

that under some conditions the Barankin bound is a better predictor of shift esti-

mator performance. These conditions include low-SNR imaging and imaging under

defocus error, two conditions which are frequently encountered in military imaging

systems that employ passive infrared, light radar (LIDAR), and synthetic aperture

radar (SAR).

The research looks at the related problem of single-frame image denoising us-

ing block-based methods. The research introduces three new algorithms for single-

frame image denoising that operate by identifying regions of interest within a noise-

corrupted image and then generating noise free estimates of the regions as averages

iv



of similar regions in the image. The algorithms are shown to outperform Wiener

and median filtering over a wide range of noise conditions but are most effective in

images with very low signal-to-noise ratios.

v



Acknowledgements

When I worked in the Pentagon and someone asked me how I was doing,

I would often joke, “I’m living my dream.” Here at AFIT, I was able to say that

without irony. I am grateful to a number of people helped me get here and provided

me with immeasurable support and assistance in the completion of this dissertation.

First of all, I would like to thank my wife and daughter who gave up so much of

their family time so that I could have this experience here at AFIT. I would also

like to thank my advisor Dr. Richard Martin, who spent so much time reading and

rereading my work. My committee members, Dr. Stephen Cain and Dr. Matthew

Fickus, also gave their time freely and provided guidance, comments, and patient

explanations. The Dean’s Representative on the committee, Dr. Chrissis, also pro-

vided immeasurable help with the style and layout of this document. I was also

fortunate enough to have fellow students and members of the faculty and staff who

were able to put a critical eye on my work and help me balance my family, military,

and academic responsibilities. CDR Rob Stevens was someone I could always count

on when I was the Senior Student Leader. Finally, I am grateful for the continuing

support and mentorship of Brig Gen (ret.) Bradley Butler.

Matthew D. Sambora

vi



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Image Registration . . . . . . . . . . . . . . . 2

1.1.2 Single-Frame Image Denoising . . . . . . . . . 5

1.2 Purpose of the Research . . . . . . . . . . . . . . . . . 7

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 7

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Projection-Based Image Registration . . . . . . . . . . 9

2.2 Filtering Images to Facilitate Image Registration . . . 12

2.3 Bounds on the Mean-Squared Error of Estimators . . . 14

2.4 Calculating the Optical Transfer Function of an Imaging
System . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Existing Single-Frame Denoising Algorithms . . . . . 17

2.5.1 Total Variation Minimization . . . . . . . . . 18
2.5.2 Anisotropic Diffusion . . . . . . . . . . . . . . 20

2.5.3 Bilateral Filtering . . . . . . . . . . . . . . . . 21

2.5.4 Nonlocal Means . . . . . . . . . . . . . . . . . 22
2.5.5 Patch-Based Denoising with Optimal Spatial Adap-

tation . . . . . . . . . . . . . . . . . . . . . . 24
2.5.6 Other Patch-Based Methods . . . . . . . . . . 25

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . 25

III. Improving Projection-Based Image Registration . . . . . . . . . 27

3.1 Improved Projection-Based Algorithm . . . . . . . . . 28

3.1.1 Introduction of the Revised Figure of Merit . 29

3.1.2 Use of the FOM in Filter Design . . . . . . . . 30

3.2 Observing Covariance in Images . . . . . . . . . . . . . 32

vii



Page

3.3 Experimental Results . . . . . . . . . . . . . . . . . . 33

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . 40

IV. Bounds on Image Registration Algorithms . . . . . . . . . . . . 46

4.1 Performance Bounds on Image Registration With Fil-
tered Projections . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 The CRLB of Registration Using Image Projec-
tion . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 The Barankin Bound on Registration Using Pro-
jections . . . . . . . . . . . . . . . . . . . . . 48

4.2 Bounds of Two Dimensional Image Registration With
Filtered Images . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 2-D CRLB with Optical Filtering . . . . . . . 50

4.2.2 2-D Barankin Bound . . . . . . . . . . . . . . 51
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . 53

4.3.1 Registration Performance for Standard Pentagon
Image . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Registration Performance of Actual LIDAR data 56

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . 59

V. Block-based Methods for Denoising Images . . . . . . . . . . . . 62

5.1 The Gaussian Detection Denoising Method . . . . . . . 62

5.1.1 Overview of the GDD Denoising Method . . . 63

5.1.2 GDD Preliminary Assumptions and Calculations 64

5.1.3 Observed Distribution of Mean Squared Errors 66

5.1.4 Experimental Results with the GDD Algorithm 69

5.1.5 Conclusions Drawn from Initial Results . . . . 72
5.2 The HOD and XCD Denoising Algorithms . . . . . . . 73

5.2.1 Higher-Order Statistics Method for Block Match-
ing . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Correlation-Based Method for Block Matching 83

5.2.3 HOD and XCD Simulation Results . . . . . . 85
5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . 91

VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Summary of Results and Contributions . . . . . . . . 97

6.1.1 Review of Results in Chapter III . . . . . . . 97

6.1.2 Review of Results in Chapter IV . . . . . . . . 98

6.1.3 Review of Results in Chapter V . . . . . . . . 99

6.2 Recommended Future Research . . . . . . . . . . . . . 101
6.2.1 Image Registration . . . . . . . . . . . . . . . 101

viii



Page

6.2.2 Bounds on Registration Performance . . . . . 102

6.2.3 Block-Based Denoising . . . . . . . . . . . . . 103

Appendix A. Important Derivations . . . . . . . . . . . . . . . . . . 105

A.1 Calculation of the FOM Used in Chapter III . . . . . 105

A.2 Derivation of Theoretical Performance Bounds . . . . . 107
A.2.1 Derivation of the CRLB for a Projected & Fil-

tered Image . . . . . . . . . . . . . . . . . . . 107

A.2.2 Derivation of the Two-Dimensional CRLBs . . 110

Appendix B. Mathematical Background and Related Theory . . . . 114

B.1 The Chi-Square Distribution . . . . . . . . . . . . . . . 114

B.1.1 Occurrence of the Chi-Square Distribution in
Image Processing Problems . . . . . . . . . . 118

B.1.2 Statistical Characteristics of an Experimentally
Determined Distribution . . . . . . . . . . . . 120

B.1.3 Statistics of the Sample Mean of n × n Noise
Samples . . . . . . . . . . . . . . . . . . . . . 121

B.2 Calculating the Covariance Present in Images and Image
Projections . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



List of Figures
Figure Page

1.1. Demonstration of multiframe denoising. . . . . . . . . . . . . 3

1.2. Examples of apparent redundant subimages in an image. . . . 6

3.1. 1024 × 1024 grayscale image of the Pentagon. . . . . . . . . . 32

3.2. Measured covariance of the column projections of the Pentagon
image in Figure 3.1 . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. 512 × 512 Brodatz grass image. . . . . . . . . . . . . . . . . 34

3.4. Graph of measured covariance of column projections of the grass
image in Figure 3.3 calculated without noise and again with
AWGN of σ = 100 (PSNR = 8.12). . . . . . . . . . . . . . . . 34

3.5. 1024 × 1024 Brodatz sand image. . . . . . . . . . . . . . . . 35

3.6. Graph of measured covariance of column projections of the sand
image in Figure 3.5 calculated without noise and again with
AWGN of σ = 100 (PSNR = 8.13). . . . . . . . . . . . . . . . 35

3.7. 1024 × 1024 Brodatz water image. . . . . . . . . . . . . . . . 36

3.8. Graph of measured covariance of column projections of the
image in Figure 3.7 calculated without noise and again with
AWGN of σ = 100 (PSNR = 8.13). . . . . . . . . . . . . . . 36

3.9. Calculated FPy, and MSE for the Pentagon image in Figure 4.1
with σnoise = 100, actual shift = 0. . . . . . . . . . . . . . . . 42

3.10. Calculated FPy , and MSE for the grass image in Figure 3.3 cal-
culated without noise and again with AWGN of σ = 100. . . 42

3.11. Calculated FPy , and MSE for the sand image in Figure 3.5 with
σnoise = 100, actual shift = 0. . . . . . . . . . . . . . . . . . . 42

3.12. Calculated FPy , and MSE for the water image in Figure 3.7 with
σnoise = 100, actual shift = 0. . . . . . . . . . . . . . . . . . . 42

3.13. Optimal spatial-domain filtering kernel for the Pentagon image
in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14. Optimal spatial-domain filtering kernel for the Brodatz water
image in Figure 3.7. . . . . . . . . . . . . . . . . . . . . . . . 43

3.15. 512 × 512 Tank image from http://sipi.usc.edu/database/. . 44

3.16. Calculated covariance function for the 512 × 512 Tank image. 44

3.17. Calculated FPy, and MSE for the tank image in Figure 3.15 with
AWGN of σ = 100. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.18. Aerial image of cornfield from a sequential series of frames. . 45

3.19. Graph of kernel vs MSE for the image of Figure 3.18 with
AWGN of σ = 20 when measuring an actual shift of zero. . . 45

3.20. An aerial image of a road taken from the series. . . . . . . . . 45

x



Figure Page

3.21. Comparison of the calculated FPy, for the images in Figs. 3.18
and 3.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1. 1024× 1024 Pentagon image from http://sipi.usc.edu/database/. 54

4.2. Bound on the variance of estimates of the x-shift for the image
shown in Figure 4.1 using both projections and 2-D registration. 54

4.3. 128 × 128 subsection of Figure 4.1. . . . . . . . . . . . . . . . 55

4.4. Calculated performance bounds for registration using projec-
tions and 2-D registration for the 128 × 128 subsection of the
Pentagon image. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5. Image shown in Figure 4.1 with simulated 0.7λ defocus error. 56

4.6. Bounds for the image shown in Figure 4.1 with simulated 0,
0.1λ, 0.3λ, and 0.7λ defocus errors. . . . . . . . . . . . . . . . 56

4.7. Image shown in Figure 4.3 with simulated 0.7λ defocus error. 57

4.8. Bounds for the image shown in Figure 4.3 with simulated 0,
0.1λ, 0.3λ, and 0.7λ defocus errors. . . . . . . . . . . . . . . . 57

4.9. 256 × 256 image resulting from median filtering, and averaging
50 frames of LIDAR data captured at 10 km from the target. 59

4.10. Representative LIDAR frame prior to filtering and averaging
(PSNR = 26.3). . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11. 68 × 168 region of interest within the image of Figure 4.9. . . 59

4.12. Representative region of interest in a LIDAR frame prior to
filtering and averaging (PSNR = 24.6). . . . . . . . . . . . . 59

4.13. Bounds on registration using projections and 2-D registration
of the LIDAR frame shown in Figure 4.9. . . . . . . . . . . . 60

4.14. Bounds on registration using projections of the LIDAR frame
region of interest shown in Figure 4.11. . . . . . . . . . . . . 60

5.1. Graph of the PDF χ
′2
225(0) over 0 ≤ x ≤ 500 . . . . . . . . . . 67

5.2. Histogram of the Mean Squared Error between a representative
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5.4. Truth image used to generate the simulation data. . . . . . . 71

5.5. Truth image with AWGN of σ = 25 added. . . . . . . . . . . 72

5.6. Histogram of the Noisy Image. . . . . . . . . . . . . . . . . . 73

5.7. Output obtained using the NLM means algorithm. . . . . . . 74

5.8. Output obtained using the GDD method. . . . . . . . . . . . 75

5.9. Output obtained by GDD denoising using 49 of 10201 possible
15 × 15 blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10. Output obtained by GDD denoising using an overlapping lattice
of 98 of 10201 possible 15×15 blocks. . . . . . . . . . . . . . 77

xi



Figure Page

5.11. Plot of the measured maximum skewness vs. N - the square
root of the block size. . . . . . . . . . . . . . . . . . . . . . . 81

5.12. Graph of results comparing output of HOD filtering, XCD fil-
tering, Wiener filtering and median filtering. . . . . . . . . . 86

5.13. Block size vs. HOD output for a 101 × 101 image. . . . . . . 87

5.14. Block size vs. XCD output for the 101 × 101 image. . . . . . 87

5.15. 512 × 512 image of a tank derived from LIDAR data. . . . . 89

5.16. Image of Figure 5.15 corrupted with noise of σ = 9000, input
PSNR = 18.96. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.17. Image in Figure 5.16 denoised using HOD and a block size of
six. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.18. Image of Figure 5.16 denoised using Wiener filtering. Output
PSNR = 26.23. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19. Original 256 × 256 LIDAR image of a tank resulting from a
multiframe average. . . . . . . . . . . . . . . . . . . . . . . . 94

5.20. Tank image with Additive White Gaussian Noise, σnoise = 5000,
input PSNR = 19.33. . . . . . . . . . . . . . . . . . . . . . . 94

5.21. Tank image with Additive White Gaussian Noise, (input PSNR
= 19.33) after Wiener filtering. Output PSNR = 26.43. . . . 94

5.22. Tank image with Additive White Gaussian Noise, (input PSNR
= 19.33) after HOD filtering with block size of 5, output PSNR
= 31.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.23. The “method noise” derived by subtracting the denoised image
found in Figure 5.17 from the original noisy image found in
Figure 5.16 Figure 5.16. . . . . . . . . . . . . . . . . . . . . . 95

5.24. Results of the HOD and XCD methods compared against the
Exemplar-based image denoising algorithm. . . . . . . . . . . 95

5.25. Results of the HOD and XCD methods compared against the
Bayeshrink and SUREshrink algorithms. . . . . . . . . . . . . 96

B.1. The PDF of χ
′2
ν (λ) with λ = 0 . . . . . . . . . . . . . . . . . 116

B.2. The PDF of χ
′2
ν (λ) with λ = 1 . . . . . . . . . . . . . . . . . 116

B.3. The PDF of χ
′2
ν (λ) with λ = 3 . . . . . . . . . . . . . . . . . 117

B.4. The PDF of χ
′2
ν (λ) with λ = 6 . . . . . . . . . . . . . . . . . 117

B.5. Graph of the PDF of χ
′2
ν (λ) with λ = 10 . . . . . . . . . . . . 118

B.6. Analytically constructed plot of the PDF of the mean of an
ensemble of noise samples. . . . . . . . . . . . . . . . . . . . 122

B.7. Experimentally constructed plot of the PDF of the mean of an
ensemble of noise samples. . . . . . . . . . . . . . . . . . . . 123

B.8. Per pixel error between similarly constructed images. . . . . . 125

B.9. Comparison of measured vs. predicted data with χ
′2
ν (λ) with

λ = 15 distribution. . . . . . . . . . . . . . . . . . . . . . . . 128

xii



Figure Page

B.10. 1024 × 1024 grayscale image of the Pentagon. . . . . . . . . . 129

B.11. Measured covariance of the column projections of the image in
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.12. 256 × 256 grayscale aerial image of a chemical plant. . . . . . 130

B.13. Measured covariance of the column projections of the image in
Figure B.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.14. Measured covariance of column projections of the pentagon im-
age with AWGN of σ = 100. . . . . . . . . . . . . . . . . . . 130

B.15. Measured covariance of the column projections of the image in
Figure B.12 with AWGN of σ = 100. . . . . . . . . . . . . . . 130

xiii



List of Symbols
Symbol Page

Tα One-dimensional translational shift operator . . . . . . . 3

Tα,β Two-dimensional translational shift operator . . . . . . . 3

di,x(y) Point on on a vertical projection of a frame of data . . . 4

dn,y(x) Point on on a horizontal projection of a frame of data . 4

iy(x) Projection of a diffraction-limited image . . . . . . . . . 5

qn(x) Projection of the noise component of an image . . . . . . 5

Wf Windowing operator for a vector of data . . . . . . . . . 10

mp Index of the center point of a projection . . . . . . . . . 11

δs Maximum allowable shift value between two frames of data 11

J Fisher Information Matrix . . . . . . . . . . . . . . . . . 14
Θ Vector of non-random parameters . . . . . . . . . . . . . 14

L(d|Θi,Θ0) Likelihood function used to calculate the Barankin Bound 15

H Optical transfer function of an imaging system . . . . . 17

Ho Inverse Fourier transform of the optical transfer function 17

div The divergence of a gradient . . . . . . . . . . . . . . . . 20

∇ Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A Matrix of weighting factors . . . . . . . . . . . . . . . . 23

I The identity matrix . . . . . . . . . . . . . . . . . . . . 54

〈F,G〉 The inner product of matrices F and G . . . . . . . . . 66

<{} Real part of a complex number . . . . . . . . . . . . . . 66

x A random variable with a χ
′2
ν (λ) distribution . . . . . . . 114

ν Degrees of freedom of a χ
′2
ν (λ) distribution . . . . . . . . 115

λ noncentrality parameter of a χ
′2
ν (λ) distribution . . . . . 115

Γ(u) Gamma function . . . . . . . . . . . . . . . . . . . . . . 115

VAR[x] Variance of x . . . . . . . . . . . . . . . . . . . . . . . . 115

χ
′2
ν (λ) Noncentral chi-square distribution . . . . . . . . . . . . 115

∆s,t The error between a given subimage and one centered at s, t 119

σ Standard deviation of a random variable . . . . . . . . . 119
‖A‖F The Frobenius norm of matrix A . . . . . . . . . . . . . 120

〈 〉 Sample mean . . . . . . . . . . . . . . . . . . . . . . . . 121

Fi,j Mean-subtracted subimage to be denoised . . . . . . . . 124

Gs,t Statistically similar, zero-mean blocks used to denoise Fi,j 124

xiv



Symbol Page

∆̂s,t Estimated error between Fi,j and Gs,t . . . . . . . . . . 124

E[x] Expected value of x . . . . . . . . . . . . . . . . . . . . 126

xv



List of Abbreviations
Abbreviation Page

SNR Signal-to-Noise ratio . . . . . . . . . . . . . . . . . . . . 7

CCD Charge-Coupled Device . . . . . . . . . . . . . . . . . . 9

FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . 10
FPN Fixed Pattern Noise . . . . . . . . . . . . . . . . . . . . 10
FOM Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . 11

PSD Power Spectral Density . . . . . . . . . . . . . . . . . . 13

CRLB Cramer-Rao lower bound . . . . . . . . . . . . . . . . . 14
OTF Optical Transfer Function . . . . . . . . . . . . . . . . . 16

ATF Amplitude Transfer Function . . . . . . . . . . . . . . . 16

TV Total Variation . . . . . . . . . . . . . . . . . . . . . . . 18
NLM Nonlocal Means . . . . . . . . . . . . . . . . . . . . . . . 22
OSA Optimal Spatial Adaptation . . . . . . . . . . . . . . . . 24

i.i.d. Independent and Identically Distributed . . . . . . . . . 30

PSNR Peak Signal-to-Noise Ratio . . . . . . . . . . . . . . . . 37

PDF Probability-Distribution Function . . . . . . . . . . . . . 47

FIM Fisher Information Matrix . . . . . . . . . . . . . . . . . 48
GDD Gaussian Detection Denoising . . . . . . . . . . . . . . . 63

LIDAR Light-Radar . . . . . . . . . . . . . . . . . . . . . . . . . 69

HOD Higher-Order Denoising algorithm . . . . . . . . . . . . 75

XCD Cross Correlation Denoising algorithm . . . . . . . . . . 83

ATR Automatic Target Recognition . . . . . . . . . . . . . . 102

xvi



Statistical Methods

for

Image Registration and Denoising

I. Introduction

For the United States Air Force, images are crucial for real-time intelligence,

target planning, and flight operations. Images are also analyzed extensively by

military personnel engaged in medical diagnostics, nondestructive inspection, astron-

omy, security, law enforcement and counterintelligence. Not only are these images

used for a variety of purposes, they are also taken under a variety of adverse con-

ditions and with illumination sources that range in frequency from ultrasound to

x-ray. In order to minimize power consumption to avoid detection of the receiver

in an operational scenario, the imaging systems being used may be passive (as with

passive infrared systems) or may use signals of opportunity such as street lights for

illumination sources. Compounding these challenges, the receiver may be located at

a distance miles away from the target, may have only a fleeting glance at a target,

and may be degraded by severe thermal or weather conditions. These systems may

also be used in unpredictable environments with insufficient illumination, signifi-

cant background noise, and spurious electronic emissions. Despite theses challenges,

as noted by Driggers et al. [20], these imaging systems may be used to determine

whether or not to fire on a particular target. Thus, the ability to receive and interpret

images is key to making decisions having lethal consequences.

1.1 Problem Setting

The ongoing challenge addressed by the research described in this dissertation

is the estimation of underlying image parameters from available data when that data
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is corrupted by additive noise. Some amount of noise is always present in digital

imaging systems for reasons eloquently described by Snyder et al. [51]. These noise

sources include random variations in photon conversions during object illumination,

thermal noise in the sensor, background noise caused by luminescent radiation in the

area of the sensor, sensor biases, and random noise induced by the sensor amplifier

during readout of the individual pixel.

The approach used in this research to solve this estimation problem is to fuse

available information to estimate the noise-free intensity of a scene, the motion of

the imaging sensor, or the motion of an object within an image. One aspect of this

problem that will be explored is the fusion of multiple frames of the same scene to

create an estimate of intensity scene that is better than any single frame of that

scene.

1.1.1 Image Registration. When a sensor is able to take many frames of

the same scene, or when many frames of the same scene are available from different

sensors, it is possible to combine these frames to estimate the parameters of the

scene or the sensors. A simple example of this is shown in Figure 1.1 where several

frames of the same scene are averaged to form an improved estimate of an image of

a tank. However, the ability to perform this fusion is much more complicated than

this figure indicates.

In an actual imaging system the sensor creating the image may be moving

or vibrating and the frames of the image captured by the sensor may be separated

by some unknown spatial offset. The process of estimating this offset and aligning

the image frames is called image registration [7]. If the images can be registered

correctly, the estimated offset of the frames may be used to estimate the motion of

the sensor. This real-time application of the data requires registration algorithms

that are fast and highly accurate.
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PSNR = 24.5799

PSNR = 24.5188
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PSNR = 24.4767

PSNR = 30.6768 Truth Image

AVG

Figure 1.1: Example of multiple frames of the same scene used
to improve the estimate of a scene.

The research proposed in this dissertation addresses this need by introducing a

novel method for optimizing the performance of projection-based image registration

algorithms. To keep this examination tractable, the problem is bounded to include

only translational shifts. The mathematical model which will be used throughout this

dissertation to describe this operation is now defined where it is assumed there are

two N ×N observations of an image I corrupted with additive white Gaussian noise

(AWGN) Q where I(x, y),Q(x, y) ∈ R so that D(x, y)∗ = D(x, y) under complex

conjugation.

For the one-dimensional case, an operator Tα is defined that acts on a vector

i such that

(Tαi)(x) ≡ i(x− α) (1.1)

For the two-dimensional case, an operator Tα,β is defined that acts on a vectorized

version of I such that

(Tα,βI)(x, y) ≡ I(x− α, y − β) (1.2)
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Tα and Tα,β are unitary, norm-preserving operators that can be realized using cir-

culant matrices and have the properties

Tα1Tα2 = T(α1+α2), (1.3)

(Tα)T = T−α, (1.4)

Tα1,β1Tα1,β2 = Tα1,(β1+β2), (1.5)

Tα1,β1Tα2,β1 = T(α1+α2),β1 , (1.6)

(Tα,β)T = T−α,−β. (1.7)

Subscripting with n ∈ {1, 2} to indicate the number of the observation, two

frames of image data are now defined

D1 = I + Q1, (1.8)

D2 = Tα,βI + Q2, (1.9)

where α and β are shifts of the diffraction-limited image I in the x and y direc-

tions respectively. Furthermore, the additive noise, Q1 and Q2 are defined to be

independent and identically distributed Gaussian with zero mean and variance σ2.

The optimization method introduced by this dissertation employs projections

of sequential image frames to create an estimate of their spatial offset. This is shown

to be a computationally simple approach that is also highly accurate. The x and y

projections of Dn are defined in the dissertation as di,x(y) and dn,y(x) where [11]

dn,x(y) =
N−1∑
x=0

Dn(x, y), (1.10)

dn,y(x) =
N−1∑
y=0

Dn(x, y). (1.11)
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Expanding these terms for frame i in direction y yields

dn,y(x) =
N−1∑
y=0

I(x, y)

︸ ︷︷ ︸
iy (x)

+
N−1∑
y=0

Qn(x, y)

︸ ︷︷ ︸
qn(x)

, (1.12)

where iy(x) and qn(x) are introduced as notation for the projection of the diffraction

limited image and the projection of the noise in the image. Note that n ∈ {1, 2}
is an index and i is a vector projection of the data. The research described in the

dissertation includes the introduction of a novel method for filtering these projections

to improve the accuracy of estimates of image translations.

The accuracy of estimates on translations between images is a function of image

content and the amount of additive noise in the images. Limits on this accuracy

have been predicted using information-theoretic analytical tools such as the Cramer-

Rao lower bound [53]. However, this commonly-used bound provides an incomplete

description of the behavior exhibited by image registration algorithms under the

high-noise conditions present in some military imaging systems. Under high-noise

conditions, the Cramer-Rao lower bound is shown in this research to be an overly-

optimistic predictor of estimator performance.

To address this shortcoming, this dissertation applies the Barankin bound to

the image registration problem. This bound, used traditionally for estimating trans-

lational shifts between one-dimensional signals [37, 38, 41], is extended here to the

two-dimensional problem of image registration. The Barankin bound is used to find

a lower bound on the mean-squared error of shift estimates generated from images

that are out of focus and corrupted by noise. It is also employed to compare the

performance of registration estimates generated from projections.

1.1.2 Single-Frame Image Denoising. Single-frame image denoising al-

gorithms combine information from a single noise-corrupted image to estimate the
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Figure 1.2: Examples of apparent redundant subimages in an
image.

intensity of the underlying noise-free scene. A variety of approaches have been used

to perform this denoising [1,6,9,12,13,16,17,31,32,40,49,52]. All of these approaches

employ some measure of similarity for comparing and combining individual pixels

in an image. Several of these methods [9, 31, 32] compare pixels by measuring the

similarity of local neighborhoods around these images.

As shown in Figure 1.2, it is a often a simple exercise to at least roughly

identify similar regions within images that may contribute to a noise-reduced block

average. If mean of the noise in the redundant subimages is zero, averaging should

yield a result that is close, in an L2-norm sense, to the diffraction-limited subimage.

This process is similar to multiframe image denoising using small frames but has the

additional challenge of differentiating similar from dissimilar content. These methods

have been shown to be effective [9,31,32]; however, the methods in the literature also

rely on parameters that are specific to the image under study and may be further

improved.

This dissertation introduces several new image processing algorithms that com-

pare and combine subimages within a frame to provide denoising performance that
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is on par with, and in some cases superior to, the performance achieved by other

state-of-the-art algorithms. Unlike similar block-based algorithms, these algorithms

suspend the requirement for similar blocks to be located in close spatial proximity

to each other. This is shown to improve denoising performance over existing block-

based methods in the most severely corrupted images (as measured by signal-to-noise

ratio (SNR)) while reducing reliance on image-specific parameters in the algorithm.

1.2 Purpose of the Research

The research described in this dissertation examines the interrelated problems

of image registration and image denoising. It develops novel methods to improve

the performance of existing registration and denoising algorithms. It also extends

the general understanding of the performance of image registration algorithms by

extending the existing one-dimensional applications of the Barankin bound to the

two-dimensional problem of image registration.

1.3 Overview

As a synopsis of the dissertation structure, the following outline is provided:

Chapter II provides a review of related research and theoretical background that will

support discussion of the concepts in the following chapters. Chapter III introduces

a computationally-efficient method for estimating translational shifts of frames of the

same scene. This method can be used for estimating the motion of a sensor between

frames or to facilitate multiframe averaging. Chapter IV examines and extends the

theoretical bounds on estimates of shifts between similar images and subimages.

The effects of filtering, projecting and defocus errors in images are examined and

the Barankin bound on image registration is introduced and demonstrated to be

relevant to projections and low-intensity image processing. Chapter V introduces

several new algorithms that exploit regularity in an image to facilitate denoising

when only a single frame of a scene is available. The dissertation concludes in
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Chapter VI with a summary of the research in this dissertation and proposals for

further work on statistical image processing problems.
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II. Literature Review

The problems of image registration and single-frame image denoising have been

extensively studied in the literature. This survey of existing work looks at

those methods from recent literature that offer the most computationally-efficient

methods for estimating shifts between images. This review identifies opportunities

for improving on existing methods for projection-based image registration and iden-

tifies a method for improving the accuracy of estimates on the performance limits

of registration estimates. The review also examines statistical methods rooted in in-

formation theory for analyzing the performance of those methods. The review then

covers a number of related single-frame image denoising algorithms that are similar

in nature to the multiframe averaging methods that are facilitated by image regis-

tration. The review provides insight into ways that existing block-based algorithms

may be improved.

2.1 Projection-Based Image Registration

Image registration as described in this dissertation is the process of spatially

aligning images which may have been taken by different sensors or were captured at

different times. This spatial alignment may be used for multiframe image denoising

[36] or for estimating camera motion [46]. Images may be registered using a variety

of techniques including cross correlations, Fourier transforms, and by identifying

and aligning features within different images. An overview of these and other image

registration algorithms is available in [7].

If an imaging sensor is used primarily for motion estimation, image projections

offer what is perhaps the fastest approach for registering available images at a low

computational cost [11, 45]. This speed is the result of faster data acquisition times

and reduced computational complexity. As described by Cain [10], existing Charge-

Coupled Devices (CCDs) need to be read out serially if an entire image is to be
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acquired. However, if only a projection is required, the projection may be formed by

integrating charges corresponding to photon counts across the vertical and horizontal

axes of some existing CCDs [10]. Although less image information is available in the

projections than in a full 2-D image, Cain et al. note that in the presence of fixed

pattern and temporal noise, projection-based methods can provide performance that

is actually superior to that of 2-D cross correlations [11].

In addition, registering the image projections requires two 1-D cross correla-

tions instead of one 2-D cross correlation. Cross-correlation of N × N 2-D images

is most efficiently performed in the frequency domain and requires a total of three

fast Fourier transforms (FFTs) yielding a computational complexity of O(6N2logN).

For the same image, the cross-correlation of its projections in the frequency domain

requires six FFTs for a total complexity of O(6NlogN). Using projections, methods

involving only real numbers (and possibly only integers) become feasible yielding

further reductions in computational complexity. For motion estimation purposes,

this combination of readout speed and low computational complexity makes these

algorithms especially attractive.

Cain et al. [11] describe how registering images using their projections can

improve performance over 2-D correlation methods when significant fixed pattern

noise (FPN) is present in the images. The mechanism behind this is that the signal

in the projections is correlated and the FPN is assumed to be uncorrelated. They

go on to note that the ability to correctly register two images in correlation-based

image registration is dependant not only on the height of the autocorrelation peak,

but also on the difference between the peak and other points on the autocorrelation.

A windowing operator is used in their calculation which is denoted as Wf and

is realized computationally as a diagonal matrix where the diagonal elements are

Wf (z, z) =





1 : |z −mp| ≤ (N/2− δs)

0 : else
(2.1)
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where the variable mp is the value of z corresponding to the midpoint of a projection

(i.e. the index of the center point of the projection) and δs is the maximum allowable

shift value between the frames. This windowing function is necessary to ensure

that the data overlaps for a sufficient number of terms of the cross-correlation and

mitigates the reduction in cross correlation power that would otherwise occur for

two identically sized projections.

Using the projections and the windowing function notation, Cain et al. com-

pute the 1-D cross correlations of the windowed projections of two images as [11]

py = d1,y ∗Wfd2,y −Wfd1,y ¯ d2,y, (2.2)

px = d1,x ∗Wfd2,x −Wfd1,x ¯ d2,x. (2.3)

where di,z, z ∈ {x, y} denotes a vector of length N with all elements equal to the

scalar average of a given projection and (Wfd1,z) is a vector with the elements equal

to the mean of di,z over a windowed area for a given index of di,z. The notation ∗
is used to indicate convolution and ¯ to indicate a Hadamard multiplication. The

windowing function in (2.2) and (2.3) effectively bounds the search area for the

registration peak to a subregion within d1,x or d1,y. This windowing function should

be defined based on a bound on the translation between frames. Large translations

will necessitate a small window and vice versa.

The shift estimate is computed from the projections defined in (2.2) and (2.3)

and is calculated as

α̂ = arg max
z
|py(z)|, (2.4)

β̂ = arg max
z
|px(z)|. (2.5)

Cain et al. [11] also describe a figure of merit (FOM) that can be used to

evaluate the ability to differentiate the shift between two images. Cain’s FOM is
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defined such that z is the integer-valued index of a point on the cross correlation

between two projections and α and β are the actual shifts in the x and y directions.

The FOM is stated

FPy(z, α) , (E[py(α)]− E[py(z)])
2

E[VAR[py(z)|i] + VAR[py(α)|i]] , (2.6)

FPx(z, β) , (E[py(β)]− E[py(z)])
2

E[VAR[py(z)|i] + VAR[py(β)|i]] , (2.7)

where the notation E[.] indicates the expected value of a random variable and z is

used as an integer index for the cross correlation.

Although this FOM is accurate for the algorithm described, if the projections

are filtered the noise in adjacent points of the cross correlation becomes correlated

and the assumptions under which the FOM was developed no longer apply. This

points to a need to further generalize the FOM to account for filtering.

2.2 Filtering Images to Facilitate Image Registration

Filtering images prior to their registration has been discussed extensively in

the literature. It has also been used in the related problem of time-delay estimation

of 1-D signals [33]; however, the bounds on registration from filtered images has not

been fully explored.

Barron [3] notes that prefiltering to smooth images is a common first stage of

many image registration algorithms. Filtering to improve registration performance

is also described in [4,39,46] and this improvement has been attributed to a variety

of sources. For example, Bergen et al. [4] suggest that filtering improves registra-

tion performance by eliminating high frequency image content that is most likely

to include the effects of aliasing. Filtering may also correct for estimation biases

resulting from fixed pattern noise [11], or from biases inherent to the estimation

method used [46, 47]. Elad et al. [22] discuss the design of filters for gradient-based

motion estimation and show a way to design filters that combine smoothing and
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gradient based estimation. Elad et al. [22] also provide a summary of the filtering

technique proposed by Simoncelli et al. in [50] which contains a presmoothing step.

The filters arrived at in these papers are essentially a combination of low-pass fil-

ters that remove extreme high-frequency content and high-pass filters that remove

low-frequency image biases.

One low-pass filter design approach that has been explored in the literature is

Wiener filtering two images before attempting to register them [34]. This method

may also be applied to the projections of an image. Using a signal Power Spectral

Density (PSD) calculated from the noise-free image (SO) and a noise PSD calculated

from the known characteristics of our noise (Sn), an optimal filtering kernel can be

calculated for a projection as [26]

K =
SO

SO + Sn

. (2.8)

The filtering kernel K is then multiplied with the Fourier transform of the

projection. The inverse Fourier transform of the result of this multiplication is the

filtered projection. An exact calculation of the PSD or the autocorrelation relies

on either a priori knowledge or estimation from noisy data using techniques such

as those described by Kay [30]. Elad [22] also suggests that the spectral content

of a series of images should be considered in designing a filter to improve image

registration performance.

This background on filtering may be combined with a FOM that is general-

ized from (2.7) to design simple filters that are optimized to minimize the MSE of

registration estimates. The difference between the filters proposed and Wiener (or

other) filtering is that the proposed filters use binary coefficients that allow them

to be implemented as integer additions in combinational logic. These simple and

computationally inexpensive filters can be used to achieve effects approaching those
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of more complicated Wiener filters that need to be implemented using floating-point

calculations.

2.3 Bounds on the Mean-Squared Error of Estimators

The performance of an estimator used for estimating shifts between images is

governed by fundamental statistical limits. A variety of approaches have been used to

examine bounds on the performance of image registration algorithms; however, one

of the most common approaches is the Cramer-Rao lower bound (CRLB). Robinson

and Milanfar derive the CRLB on the performance of image registration algorithms

in [46]. They derived related bounds in [48] for analyzing the performance of super-

resolution imaging. Yetik and Nehorai provide extensive analysis and derivations of

Cramer-Rao lower bounds for a variety of geometric distortion models in [55].

Van Trees shows that the CRLB on an unbiased estimate α̂ of a single non-

random parameter of a vector of data d is [53]

VAR[α̂(d)] ≥
{
−E

[
∂2 ln p(d|α)

∂α2

]}−1

. (2.9)

Where multiple non-random parameters are estimated, a Fisher Information Matrix

(FIM), J can be derived. Say a vector of non-random parameters Θ is to be estimated

from a vector of observations, d. Each element of J located at index (i, j) can be

defined [53]

Ji,j , −E

[
∂2 ln p(d|Θ)

∂Θ(i)∂Θ(j)

]
. (2.10)

The phase shift between two vectors of identical data received through two different

channels is an example of a parameter that is commonly estimated. For applications

with low SNRs, estimates of this shift exhibit thresholding behavior [37, 41] which

is not captured by the CRLB. As the SNR decreases, there may be a point in the

measured MSE where shift estimation errors begin to exceed those predicted by
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the CRLB even though the estimator is capable of reaching the CRLB at higher

SNRs. This thresholding occurs because, as the noise in an image increases, it

becomes increasingly likely that registration errors will occur at the subpeaks of

the autocorrelation of an image. This behavior is observed but not quantified in

Robinson and Milanfar’s work on performance bounds [46].

This deficiency in quantifying this thresholding behavior can be resolved by

examining another bound used traditionally in high-noise, low-signal-strength envi-

ronments for estimating delays between signals. The Barankin bound has been used

for time-delay estimation of one-dimensional signals [37, 38, 41]. In the literature,

thesholding behavior is predicted and estimated by the Barankin bound in the one-

dimensional problems of radar and sonar returns in the literature [37, 38, 41]. If the

true values of a vector to be estimated are represented by the vector Θ0, a shifted

version of the vector likely to produce an error can be represented as the vector Θn.

Considering the most likely values of Θn, the Barankin bound of an unbiased estima-

tor an estimate Θ̂ of a vector of true parameters Θ0 can be written and calculated

as [37]

σ2 ≥ J−1 + (Φ− J−1A)(∆−1)(Φ− J−1A)T , (2.11)

where ∆ = B−ATJ−1A, J is the FIM calculated as in the CRLB, and where

Ai,j = E

[
∂ ln p(d|Θ0)

∂Θ0(i)
L(d|Θj,Θ0)

]
, (2.12)

Bi,j = E [L(d|Θi,Θo)L(d|Θj,Θ0)] , (2.13)

Φ = [Θ1,Θ2, ...,Θn], (2.14)

and L(d|Θi,Θ0) is the likelihood function

L(d|Θi,Θ0) =
p(d|Θi)

p(d|Θ0)
. (2.15)
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The notation Θi is used to indicate values of Θ other than its true value Θ0 and

Θj(i) to indicate a scalar element of Θj indexed at i.

Because time-delay estimation is mathematically similar to spatial displace-

ment estimation in images, this bound may be extended to two-dimensional spatial

estimation to better predict the behavior of the effects of increasing noise on the

performance of correlation-based image registration. This bound may also help to

explain difficulties in estimating shifts when images are blurred as is the case with

inadvertent focal-length errors.

2.4 Calculating the Optical Transfer Function of an Imaging System

Focal-length errors can be modeled using Fourier optics. In his book on this

subject, Goodman describes the effects of defocus errors on an incoherent optical

system [24] by describing an Optical Transfer Function (OTF) as a function of a

generalized pupil function. This approach requires the use of the Amplitude Transfer

Function (ATF), the wavelength (λ) of light being detected, the size and shape of

the pupil, the distance between the optical system and the focal plane as input

parameters (zi), and the distance between the optical system and the plane of the

detector (za, assuming zi 6= za as in [24]). Using (x, y) to indicate coordinates in the

aperture plane where (0, 0) is located at the center of a circular aperture of width

2l, a pupil can be expressed as [24]

P(x, y) =





1 :
√

x2 + y2 ≤ l

0 : else
(2.16)

Goodman uses this pupil function to describe the frequency-domain ATF of a system

with a focal length abberation using frequency coordinates (fx, fy) as

G(fx, fy) = P(λzifx, λzify) exp

[
j2π

λ
W (λzifx, λzify)

]
, (2.17)
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where

W (x, y) = −1

2

(
1

za

− 1

zi

)
(x2 + y2). (2.18)

Finally, the OTF H(fx, fy) can be calculated by first calculating the 2-D autocorre-

lation of the ATF and then normalizing so that the peak of the OTF equals unity.

The inverse Fourier transform of H will be designated Ho. This optical filtering is

performed before readout noise is added to the image which affects the formation of

the PDF of the image in that additive noise is uncorrelated in the filtered pixels of

the optically filtered image. To derive CRLBs, analysis is limited to those values of

H which can be reasonably approximated by non-singular Ho (i.e. sub-wavelength

defocus errors).

2.5 Existing Single-Frame Denoising Algorithms

In order to reduce the computational complexity or output performance of

modern image denoising algorithms, it is important that one has an understanding

of how these algorithms work. To this end, this section provides an overview of

related image denoising algorithms that selectively average pixels within a single

image. Image processing literature is rife with methods for denoising images and

this review will not attempt to address all of these methods. Good overviews of

traditional single-frame image denoising algorithms may be found in [9] and in [26];

however, an overview of the methods that are most similar to the algorithms proposed

in this research is provided. These similar methods are those that reduce noise while

attempting to maintain high spatial frequency image content.

The inadvertent reduction of high-frequency content is the Achilles’ heel of

many basic image processing algorithms. Some of the simplest image smoothing

algorithms are linear, shift-invariant filters such as the Gaussian filter, the Wiener

filter [26], and the mean-shift algorithm which replaces pixels in an image with
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the mean of the pixels in a surrounding neighborhood [16, 23]. These algorithms

reduce the noise power in an image through averaging; however, because they average

without respect to local content, they also tend to blur high-frequency image content.

This deficiency necessitates the study of more complex denoising algorithms that will

maintain this high frequency content while removing additive noise from the image.

In an effort to remove noise while preserving high-frequency content, research

has turned to nonlinear filters. One of the simplest and most commonly employed

nonlinear methods for reducing noise power is the median filter which replaces indi-

vidual pixels in an image with the median value of pixels in a defined neighborhood

surrounding these pixels [26]. This filter generally provides better results than Gaus-

sian smoothing; however, better performance may be obtained using more advanced

smoothing techniques.

Neighborhood filtering is one nonlinear approach to image denoising that has

shown recent promise in the literature and has produced results that improve upon

those of many other image denoising algorithms. In a neighborhood filter, the algo-

rithm assigns an output value to a pixel based on an evaluation of the relationships

between pixels in a surrounding neighborhood. Many, if not most, neighborhood

filters are fundamentally related and the chapter begins by highlighting these re-

lationships as it reviews these algorithms. The algorithms reviewed include total

variation minimization [49], anisotropic diffusion [40], bilateral filtering [52], the

nonlocal means [9], and an optimal patch-based algorithm [31]. These algorithms all

include some measure of pixel similarity that allows the algorithm to differentiate

between similar and dissimilar pixels within the same image. All of the algorithms

discussed do this in ways that are different but are ultimately related.

2.5.1 Total Variation Minimization. The Total Variation (TV) minimiza-

tion algorithm is an iterative image smoothing algorithm that preserves edges [13,49].

Unlike the other algorithms that will be discussed in this chapter, TV minimiza-
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tion identifies similar pixels in the local neighborhood of a given pixel by examining

the L1 norm of the neighborhoods surrounding these pixels. This algorithm is de-

scribed for the continuous case by Chambolle [12] and by Rudin et al. [49] among

others; however, because digital images are sampled discretely, the most relevant

formulation is provided by Chan et al. [13]. For explanatory purposes, say there is

a pixel D(x, y) in a larger image D of size S × T where S ∈ N and T ∈ N that is

indexed using x ∈ S , {1, ..., S}, y ∈ T , {1, ..., T} and say the set of the indices of

the closest neighbors of D(x, y) is defined as A. Then, the local variation at a pixel

D(x, y) is defined as [13]

|∇x,yD| =

√ ∑

(i,j)∈A

(D(x, y)−D(i, j))2. (2.19)

To avoid discontinuities in later calculations, the local variation in (2.19) is modified

to be the regularized local variation

|∇x,yD|a =
√
|∇x,yD|2 + a2, (2.20)

where a is small constant normally chosen on the order of 10−4. The output of the

filtering is then

Î(x, y) =
∑

(i,j)∈A

hαβ(D(i, j))D(i, j) + hαα(D(i, j))D(x, y) (2.21)

where between two pixels α indexed at D(i, j) and β at D(x, y)

hαβ(D(i, j)) =
wαβ(D(i, j))

λ +
∑

(x,y)∈A wαβ(D(x, y))
,

hαα(D(i, j)) =
λ

λ +
∑

(i,j)∈A wαβ(D(x, y))
,

wαβ(D(i, j)) =
1

|∇x,yD|a +
1

|∇i,jD|a ,
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and where λ is a Lagrange multiplier chosen for a known additive noise of variance

σ2 as

λ =
1

σ2

1

ST

∑

x∈S,y∈T

∑

(i,j)∈A

wαβ(D(i, j)−D(x, y))(D(x, y)−D(x, y)0). (2.22)

Since this is an iterative algorithm, the notation D0 is used to indicate the original

value of the image. It is interesting to note, as do Chan et al. [13], that this algorithm

gives large weights to those pixels in areas with low variation and large weights to

those with low variation. The effect of this is that area smoothing occurs with less

degradation of true image edges than would be found with a linear filter. This basic

mechanism is also present in anisotropic diffusion which is examined in the next

section.

2.5.2 Anisotropic Diffusion. Another method of image smoothing that

attempts to minimize degradation of image edges is anisotropic diffusion [40]. This

method attempts to iteratively smooth an image by treating the smoothed image

as solutions to the heat equation over arbitrary time steps. Perona and Malik [40]

create an anisotropic diffusion algorithm that accounts for edges and preserves edges

in the smoothed image by assuming them to be differences in conductivity for heat

flow. For an iteration of the algorithm on a single pixel in an image D,

Î(x, y, t) = div(c(x, y, t)∇Î(x, y, t− 1)), (2.23)

where c(x, y, t) indicates the conductivity between pixels, t is an arbitrary time step,

Î(x, y, 0)) = D(x, y), div indicates the divergence of a gradient, and ∇ is a function

that produces the image gradient. The algorithm preserves edges in the image by

modeling conductivity between pixels as functions of the image gradient so that

the conductivity between a pixel at a point (x, y) and its neighbors at time t is
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c(x, y, t) = g(∇I) where g(∇I) is proposed variously by Perona and Malik [40] as

g(∇I) = exp

(
−‖∇Î‖

σ2

)
,

g(∇I) =
1

1 +
(
‖∇Î‖

σ

)2 ,

and by Black et al. [6] as

g(∇I) =





1
2
(1− ‖∇Î‖2)2 : |∇Î| ≤ σ

0 : else
. (2.24)

where σ is a scaling constant in all of the above equations. As was the case with

TV smoothing, the effect of this algorithm is to facilitate smoothing between pixels

in regions with similar intensities, and to inhibit smoothing between pixels in dis-

similar regions. In this case, the algorithm assigns low conductivity values to pixel

values across large gradients, and high conductivity values to pixels across small

image gradients. This again helps to preserve the edges in the image by determining

similar and dissimilar pixels adjacent to a single pixel under consideration. The next

algorithm attempts to perform nonlinear smoothing using a non-iterative method.

2.5.3 Bilateral Filtering. Non-iterative algorithms are generally preferable

to iterative algorithms because they can be performed with improved processing time.

Bilateral filtering [21,52] is a non-iterative smoothing method that works by applying

a filtering kernel to an image that is designed to avoid smoothing across edges within

the image. It does this using a filtering kernel that averages pixels according to two

measures of distance: spatial distance and radiometric distance. The part of the

kernel that examines spatial distance works like a traditional Gaussian filter and

includes pixels in the average that are spatially close to a given pixel. The part of

the kernel that examines radiometric distance includes pixels in the average that are

similar in intensity. As a discrete example, say that there exists an image D of size
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S × T where S ∈ N and T ∈ N that is indexed using i ∈ S , {1, ..., S}, j ∈ T ,
{1, ..., T}. Then, it is possible to find a smoothed estimate of a pixel as

Î(i, j) =
1

Z(i, j)

∑

u∈S

∑

v∈T

D(u, v)fs((i, j), (u, v))fr(D(i, j),D(u, v)). (2.25)

In this equation, fs((i, j), (u, v)) is a function that provides a measurement of the

spatial distance between pixels, fr((D(i, j),D(u, v)) is a function that measures the

radiometric distance between pixels, and Z(i, j) is a normalizing factor. A Gaussian

example provided by Tomasi and Manduchi [52] gives these as

fs((i, j), (u, v)) = exp

(
− 1

2σ2
s

(
(i− u)2 + (j − v)2

))
,

fr(D(i, j),D(u, v)) = exp

(
− 1

2σ2
r

(
(D(i, j)−D(u, v))2

))
,

Z(i, j) =
∑

u∈S

∑

v∈T

fs((i, j), (u, v))fr(D(i, j),D(u, v)), (2.26)

where σs and σd are empirically-determined constants that spread the kernels to

achieve the desired level of filtering.

The effect of combining these distance measures is that pixels that are spatially

close but not close in intensity (as on an edge) are not included in the average.

Interestingly, Elad [21] showed that the bilateral filter is actually mathematically

equivalent to anisotropic diffusion, a result that is suggested by the work of Barash

[2]. This result provides a mathematical connection to the next smoothing algorithm

described in this chapter.

2.5.4 Nonlocal Means. Another recent approach to image denoising is the

nonlocal means (NLM) algorithm proposed by Buades et al. [8, 9]. This algorithm

compares and averages pixels chosen by evaluating their similarity based on the

similarity of their local neighborhoods. Based on this measure of similarity, this

algorithm assigns weights to other pixels of the same image and then uses a weighted
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sum approach to arrive at a denoised version of the pixel of interest. Kervrann and

Boulanger [32] provide the link to some of the other algorithms in this chapter when

they note that when the neighborhood size used in the NLM to compare pixels is

equal to 1, the NLM algorithm reduces to the bilateral filter. The unique aspect of

this filter, however, is that it measures similarity between pixels by comparing the

neighborhoods around the pixels, rather than examining the pixel values themselves.

By way of explanation, suppose there again exists an image D of size S × T

where S ∈ N and T ∈ N. For a given pixel located at (i, j), the neighborhood around

the pixel can be represented as an N × N -sized subimage Fi,j ⊂ D where Fi,j is

centered at i ∈ S , {1, ..., S}, j ∈ T , {1, ..., T} and where {N = 2n + 1 | n ∈ N}.
If a zero pad is added to image D by n in all directions then, for all s ∈ S and t ∈ T,

there are N2− 1 other subimages in D which may be similar in an L2-norm sense to

F . These subimages are denoted as Gs,t. The NLM algorithm then assigns weights

A (s, t) ∈ R to each Gs,t and constructs a denoised version of the center pixel of Fi,j

as

NLM(D(i, j)) =
∑

s∈S,t∈T

A(s, t)Gs,t(n + 1, n + 1), (2.27)

where the center pixel of Gs,t is found at the block coordinates (n + 1, n + 1). For

the case where s 6= i and t 6= j, the weights A(s, t) are assigned by the following

exponential function

A(s, t) =
1

z(i, j)
exp

(
−‖Fi,j −Gs,t‖2

F

h2

)
, (2.28)

where

z(i, j) =
∑

s∈S,t∈T

exp

(
− 1

h2
‖Fi,j −Gs,t‖2

F

)
. (2.29)
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In this equation, as in aniostropic diffusion, h is an experimentally determined pa-

rameter that controls the roll off of the exponential function. For the case where

s = i and t = j, the weight A(s, t) = max{A(s, t)|s 6= i, t 6= j} is used.

Other than the aforementioned difference in similarity measurement, the NLM

algorithm is also interesting because it appears in [9] to provide performance that

is superior to the algorithms discussed thus far. However, it also has several facets

which make it suboptimal:

• No analytic method is presented for determining the parameter h used to

control the decay of the exponential.

• Features in natural images are frequently similar but may be different in il-

lumination or reflectivity. The NLM algorithm’s reliance on the L2 norm of

the error between F and G does not exploit these highly similar regions which

could be separated only by constant bias or gain.

• The algorithm produces results that contain false contouring similar to that

seen when image pixels are sub-optimally quantized.

These shortcomings are addressed and ameliorated in the next algorithm.

2.5.5 Patch-Based Denoising with Optimal Spatial Adaptation. Kervrann

and Boulanger [31, 32] describe the Optimal Spatial Adaptation (OSA) algorithm

that overcomes some of the shortcomings of the NLM algorithm. They describe a

block-based algorithm that thresholds the Euclidian distance between blocks and

builds an exponentially weighted average of similar blocks. Their algorithm elimi-

nates the arbitrary parameter in Buade’s algorithm by employing an adaptively-sized

window around a given pixel to find an optimal neighborhood size. Like the NLM

algorithm, their method uses an exponential weighting of candidate blocks; however,

it improves on Buade’s method by eliminating the arbitrary parameter from their

algorithm and reducing smoothing artifacts. Kervann and Boulanger’s papers also
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describe a method for precisely estimating the error function of similar regions based

on the chi-square distribution.

2.5.6 Other Patch-Based Methods. Other methods have been proposed

that employ matching and combine blocks using different measures of similarity.

Dabov et al. describe a method for block matching and filtering in the Fourier domain

[17]. Their method selects similar blocks by hard-thresholding the 2-D transforms of

two blocks and then examining the L2 distance between the thesholded transformed

blocks. They then create a three-dimensional array of the matching blocks, and

perform a 3-D transform, thresholding, and inverse transform operation to arrive at

denoised estimates of the matched blocks.

The Unsupervised Information-Theoretic Adaptive Filter (UINTA) proposed

by Awate and Whitaker [1] also combines information from blocks within an image in

a way that is unique. Their algorithm selects a random sample of blocks in an image

and, using the L2 distance between the sampled blocks and a block of interest, creates

an entropy estimate for the block of interest. It then uses an iterative gradient-

descent algorithm to reduce the entropy of the center pixel in the block of interest.

The algorithm iterates until the variance of the residual error between the denoised

block and the observed block equals the known variance of the noise. Although

this algorithm does produce good results, it is computationally intensive and has a

tendency to over smooth image content. It is noted to work best on images that are

highly periodic in content [9].

2.6 Chapter Summary

This chapter has provided a review of current literature on image registration

and denoising that yields a number of opportunities for research. The review dis-

cussed potential improvements to existing registration methods that may be used to

improve image registration performance. It also showed an opportunity to employ
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the Barankin bound to extend current understanding of image registration algorithm

performance. It introduced methods employing Fourier optics that will be used to

model focal-length errors in optical systems. Lastly, it provided a review of related

nonlinear image filters that focused on the measures of similarity they use to identify

similar pixels and regions within images.
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III. Improving Projection-Based Image Registration

This chapter describes a method for accomplishing fast, reliable image registra-

tion that may be implemented with a low computational cost. The method

described extends work on projection-based image registration performed using cross

correlations described first by Cain et al. [11] and reviewed in Section 2.1. The goal

of this chapter is to provide a method for designing a low-pass filter that minimizes

the mean-squared error of registration estimates.

The filters are designed to exploit local correlations within images. Most

naturally-occurring images captured by imaging systems exhibit some local spatial

correlation [11] and a variety of models can be used to approximate correlation in

images [26]. This spatial correlation, however, is not guaranteed and is not neces-

sarily locally consistent within an image. In particular, spatial correlation may be

absent in natural images of free space and in images that are under sampled. This

chapter demonstrates that if significant spatial correlation is present in the image

projections, the performance of projection-based image registration algorithms can

be improved significantly by the application of simple low-pass filters.

The chapter assumes that the images to be registered are wide-sense stationary

(WSS) and ergodic which allows the removal of spatial indices from second order

statistics in the evaluation of the expected value of an image using a spatial average.

In practice, many images have unevenly distributed intensities that do not meet

the WSS requirement for a constant mean. Section 4.3 discusses bias reduction

techniques which allow the use of a WSS assumption even when the intensities are

not evenly distributed.

If speed is a concern, a simple bias-reduction filter can be can be implemented

optically using a two-lens system. If one lens is defocused so it acts as a low-

pass filter, the difference between the two images (or two image projections) is the

high-frequency content of the image. This arrangement is simulated in experiments
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with aerial imagery where it is apparent that this is essentially an optical edge

detection system. This chapter does not attempt a detailed description of the design

of the the bias reduction portion of such a filtering arrangement except to note

that an optical filter combined with the type of filter introduced here is much less

computationally complex than any of the methods described in the literature thus

far.

It is demonstrated in this chapter that these simple and computationally inex-

pensive filters can be used to achieve effects approaching those of more complicated

Wiener filters that need to be implemented using floating-point calculations.

3.1 Improved Projection-Based Algorithm

When the environment is expected to yield images with significant local spatial

correlation, and an imaging system is designed to provide images that are sampled

sufficiently to detect this correlation, these facts can be exploited to design filters

that can improve the performance of a projection-based shift estimator.

The low-pass filters designed in this chapter are convolutional kernels that are

applied to the projections of two images prior to calculating their cross-correlation.

Assuming that the spatial correlation of an image is the same in both projections, a

filtering kernel of length w can be determined for both dimensions as

hw(z) =
w−1∑
n=0

δ(z − n). (3.1)

For each projection dn,x and dn,y, the filtered projections are then calculated

fn,x = dn,x ∗ hw, (3.2)

fn,y = dn,y ∗ hw, (3.3)
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For imagery exhibiting spatial correlation, the effect of the aforementioned filtering

is to increase the effective SNR of the individual projections. In order to mitigate

the effects of new information entering the scene, one of the projections is windowed

using the method described in [11]. Using the notation f̄i,y to indicate a vector

with all elements equal to the mean of the filtered data within the windowed region,

these modified projections are then used to compute the 1-D cross correlations of

the projections of two images as

py = (f1,y − f̄1,y) ∗Wf (f2,y −Wf f2,y), (3.4)

px = (f1,x − f̄1,x) ∗Wf (f2,x −Wf f2,x). (3.5)

In terms of the original data, these cross correlations can be written as

py = (d1,y ∗ hw − wd̄1,y) ∗Wf (d2,y ∗ hw − wd̄2,y), (3.6)

px = (d1,x ∗ hw − wd̄1,x) ∗Wf (d2,x ∗ hw − wd̄2,x). (3.7)

As in the unfiltered case, the shift estimates are computed from these projections as

α̂ = arg max
z
|py(z)|, (3.8)

β̂ = arg max
z
|px(z)|. (3.9)

The length of the filter w is chosen by using a FOM. In the next section the FOM

introduced in [11] is modified so that it can be used as a tool to design a low pass

filter that minimizes the MSE of registration errors.

3.1.1 Introduction of the Revised Figure of Merit. Although the FOM in-

troduced in [11] and reviewed in Section 2.1 was shown to be effective in evaluating

the performance of both 2-D cross correlation and projection-based registration al-

gorithms, it is necessary to modify it for use with the new algorithm. The problem
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lies in measuring the variance of the terms in the denominators of (2.6) and (2.7). In

the new algorithm, applying a convolutional kernel of any size other than one to the

projections leads to a 1-D cross correlation function with spatially correlated noise.

Since the noise is no longer independent and identically distributed (i.i.d.) in the

points on the cross-correlation, the denominator in Cains FOM no longer accurately

reflects the vertical distance between two points on the cross correlation. Therefore

the modified figures of merit are used where again, the notation E[.] indicates the

expected value of a random variable and z is used as an integer index for the cross

correlation:

FPy(z, α) ,





(E[py(α)]−E[py(z)])2

E[VAR[py(z)−py(α)|i]] : z 6= α

0 : else
, (3.10)

FPx(z, β) ,





(E[py(β)]−E[py(z)])2

E[VAR[py(z)−py(β)|i]] : z 6= β

0 : else
. (3.11)

It is important to recognize that in changing the FOM, a discontinuity has been

introduced at the point z = α which is accounted for by assigning a value of zero at

the point of discontinuity.

3.1.2 Use of the FOM in Filter Design. The correlation-based image

registration involves searching an area of interest within a frame for content that is

identical to a previous frame. In the region that this content is identical, the cross

correlation approximates the autocorrelation of the region of interest. Thus, for any

given projection, the point of primary interest is the apex of the autocorrelation

which occurs at α = 0 and indicates the most likely estimate of the point where the

two frames are aligned. Using the notation 〈 , 〉 to denote the inner product of two

vectors, if the true shift between the images is zero, then for any shift value α an

error occurs when 〈d1,y,d2,y〉 < 〈d1,y,Tαd2,y〉. For most common correlation models,

for α 6= 0 the L2 distance between d1,y and Tαd2,y is be smallest in expectation at
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α = −1 and α = +1. Therefore, for an unbiased estimator, and a symmetric

autocorrelation model, autocorrelation points at α = +1 and α = −1 are the points

that are most likely to cause a registration error (i.e. these are normally the points

closest in magnitude to the peak of the autocorrelation.) This approach is similar

to the process of finding test points for calculation of the Barankin bound on a

registration estimate [37] and furthermore, the choice of α = +1 and α = −1 does

imply some amount of a priori knowledge of the structure of the signal PSD. However,

this correlation structure is common to most natural images except those with flat

or impulse-shaped autocorrelations.

The consequence of this conclusion is that the design of a filter can be ap-

proached by attempting to minimize the most probable registration errors. This is

done by deriving a FOM for the filtered projections that measures the effective SNR

between shifts of α = 0 and α = −1. Using the assumption that noise is i.i.d. in

each pixel, it can be shown that if the projections are filtered with a kernel of size

w and a windowing function of size L, the FOM for the filtered projections of an

N ×N image is

FPz(0, 1) ,
(LN2

(
VAR(I)− COVz(I)

)
)2

w2σ2LN2(2(VAR(I)− COVz(I)) + σ2)
. (3.12)

The derivation for 3.12 is included as an appendix in Sec. A.1. With an analytic

expression for FPy given by (3.12), an exhaustive search of values can be performed

over a reasonable range (e.g. [1, 20]) to find a value for w that maximizes the FOM.

By maximizing the FOM with this value, the most probable registration errors can

be minimized, thereby minimizing the MSE of the registration errors overall. The

optimal filter size can then be written as

wy,opt = arg max
w

FPy(0,−1). (3.13)
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3.2 Observing Covariance in Images

In order to employ (3.12), it is necessary to have a mechanism for estimating the

average covariance, COVz(I|α) described in Appendix B. This section describes how

this value can be estimated in an image corrupted by noise. The effects of biases on

these measurements are also discussed along with suggested methods for minimizing

the effects of these biases. The covariance measured and graphed in Figure 3.2 was

Figure 3.1: 1024 × 1024 grayscale
image of the Pentagon from
http://sipi.usc.edu/database/.
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Figure 3.2: Measured covariance of
the column projections of the Pentagon
image in Figure 3.1.

calculated by taking the inner product of a projection and a circularly shifted version

of the projection for the image shown in Figure 3.1 in the absence of noise. If the

covariance model is known a priori, this data in can be used in calculations; however,

for many applications, this information is not available. When noise is uncorrelated,

the available data can be used to estimate a working covariance model using only

very basic calculations.

When uncorrelated noise is added to the image, the magnitude of the center of

the covariance plot (corresponding to the variance of the noise) increases. However,

the effect on the off-center values of the covariance function is much less pronounced.
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This effect is shown pictorially in Figs. 3.3 and 3.4 where the covariance models have

been calculated by taking the inner product of a projection within the windowed area

with a circularly shifted version of itself. Although a variety of techniques could be

employed to estimate the optimal covariance model from the noisy covariance model,

a crude but usually effective method is shown here. The vector of values representing

the covariance model is called C, and the index of the the midpoint of C is 0 then

replace C(0) with

C(0) = C(−1) +
|C(−1)−C(−2)|

2
. (3.14)

The factor of one half in (3.14) gives a very conservative estimate for the location

of the peak which becomes important in the design a filter that minimizes the MSE

of the registration estimate. At this point, a variety of filtering techniques could

be employed to further smooth the covariance estimate. For example, when the

observed scene is expected to change little between frames, a covariance model could

be developed as an average of covariance models over many frames of data. However,

for simplicity, results are shown using a covariance model derived from a single frame

of data. With this covariance model, a filter can be designed for a given image that

minimizes registration errors using (3.13).

3.3 Experimental Results

The algorithm was tested using a variety of standard test images and also

with a series of images from an aerial imaging platform. Using standard images, the

operation of the algorithm was verified with images that were heavily corrupted with

AWGN. Using a sequence of frames with more typical noise values, an examination

of how the algorithm would work under more common conditions such as those

frequently encountered with infrared imaging systems was performed.
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Figure 3.3: 512 × 512
Brodatz grass image from
http://sipi.usc.edu/database/.
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Figure 3.4: Graph of measured co-
variance of column projections of the
grass image in Figure 3.3 calculated
without noise and again with AWGN of
σ = 100 (PSNR = 8.12).

In a first set of experiments, the algorithm was tested using a variety of images

that were severely corrupted by adding AWGN to two frames with σ = 100 (PSNR

= 8.14). Although this type of SNR is not normally encountered in high-illumination

imaging, it is not unusual for LADAR, or passive infrared systems under examination

for military applications. For test purposes, this level of corruption also produces

errors in sufficient quantities for meaningful analysis.

Using these corrupted images, the improvement in registration accuracy at-

tained by the registration algorithm was measured by estimating shifts for two frames

when the actual shift was zero. The correlation function for the images was mea-

sured by circularly shifting windowed, noise-free projections of the images and also

by using a single noisy frame of data and the adjustment in (3.14). In an actual

imaging system, an expected correlation model may also be assumed based on a

priori knowledge of the given imaging system and likely observations.
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Figure 3.5: 1024 × 1024 Bro-
datz sand image from from
http://sipi.usc.edu/database/.
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Figure 3.6: Graph of measured co-
variance of column projections of the
sand image in Figure 3.5 calculated
without noise and again with AWGN of
σ = 100 (PSNR = 8.13). Although an
offset is evident between the two cases,
this does not affect the results of the
calculations.
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Figure 3.7: 1024 × 1024
Brodatz water image from
http://sipi.usc.edu/database/.
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Figure 3.8: Graph of measured co-
variance of column projections of the
image in Figure 3.7 calculated without
noise and again with AWGN of σ = 100
(PSNR = 8.13). In this graph the peak
has been adjusted using (3.14).
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MSE MSE MSE MSE MSEmin w w w

Image unfiltered F̂Py ,max Wiener F̂Py,max F̂Py,max F̂Py ,max MSEmin

noisy noisy

Pentagon (Figure 4.1) 1.42 0.384 0.381 0.384 0.340 11 11 9
Grass (Figure 3.3) 0.284 0.112 0.101 0.127 0.112 3 2 3
Water (Figure 3.7) 0.557 0.084 0.064 0.102 0.084 5 4 5
Sand (Figure 3.5) 0.545 0.135 0.119 0.195 0.080 7 10 5
Tank (Figure 3.15) 6.459 3.90 1.945 3.90 1.850 2 2 12

Table 3.1: Measured and predicted results of the improved registration algorithm.

In the following discussion and graphs, the degree of noise in an image is

measured using Peak Signal-to-Noise Ratio (PSNR) where the PSNR of an S × T

sized image is defined as:

PSNR = 10 log10

(
2552

1
ST
||(I− Î)||2F

)
(3.15)

where I is the diffraction-limited image, Î is the corrupted version of the image, and

||...||F is the Frobenius norm which is defined as the square root of the sum of the

squares of the elements of a matrix. The test images studied were 256-level gray

scale so 2552 was used uniformly as the maximum pixel value in the numerator.

For each image the algorithm evaluated kernel sizes from 1 to 30. 1000 pairs

of frames were produced (i.e. a total of 30,000 trials) for each image and the shift

was estimated from the projections of the two frames. As expected, the results were

dependent upon the covariance functions of the images studied.

For comparison purposes, results were also obtained by using the optimal low-

pass filter of the projections as computed by Wiener filtering. For the images studied,

the inverse Fourier transforms of these images were approximately triangular or sinc-

like. Representative filtering kernels for column projections of the Pentagon and

Brodatz water images are shown in Figure 3.13 and Figure 3.14. MSEs resulting

from filtering using these kernels are found in Table 4.1.

The results are summarized in Table 4.1. As shown in this table, an improve-

ment in the MSE of the registration estimate was demonstrated for all of the images
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considered. The results also showed that for most images, the shape of covariance

function could be estimated to useable accuracy using only the covariance measured

from the noisy data and (3.14). Using an average covariance function developed

from multiple frames of data, it is expected that results could approach the optimal

predicted results.

In the case of the Pentagon image of Figure 4.1, using a noise-free estimate of

the covariance function, a filter size of 11 was predicted to produce registration esti-

mates with minimum MSE. In fact, this value improves the MSE of the registration

estimate by a factor of 3.7. Using measured data, the optimal filter size is indicated

to be 9 and improves the MSE of the registration estimate by a factor of 4.18.

Results for the textured images like the grass, sand and water images in Figs.

3.3, 3.5, and 3.7 were the most accurate of the images examined as these images were

the closest to being wide-sense stationary without modification. In the grass and

water images, minimum MSEs occurred at kernel sizes that were predicted using

noise-free estimates of the covariance functions. In the sand image the noise-free

estimate of the optimal kernel size was 7 and the actual optimal kernel size was 5.

Using noisy estimates of the covariance functions for these images, it was possible to

improve the MSEs of the registration estimates by factors of 2.5 to 5.5 over estimates

using unfiltered projections. Estimates developed using noise-free data improved the

MSEs of the registration estimates by factors of 2.5 to 6.6.

Two main sources of error were evident in the experiments. A primary source

of error was local image bias. A model of spatial correlation developed using circular

shifting of a windowed image incurs bias at shifts other than zero as new information

enters the window. In the experiments, bias was manifested as a difference between

the covariance function obtained using circular shifting and the covariance function

obtained by actually shifting the windowed portion of the image into regions out-

side the image. This bias helps to explain differences between the minimum MSE

predicted using the covariance function and the measured minimum MSE. Bias was
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most evident in those images, like the Pentagon image, that had significant local-

ized feature content. Images without significant bias tended to be images of regular

patterns such as the textured images in Figs. 3.3, 3.5, and 3.7.

A second source of error between kernel size and lowest MSE was the way

the estimated shift was calculated. The algorithm is designed to minimize errors

occurring at a of -1 or 1 which was the shift most likely to produce an error. However,

statistically, errors produced by other shifts that contribute to MSE can be expected.

As the covariance function of an image becomes flatter, errors contributed by shifts

other than -1 and 1 makes up a larger proportion of the total errors contributing to

the MSE. A more complete model could account for these additional shifts.

Estimates of FPy were, in general, less reliable for small kernel sizes (i.e. less

than approximately four.) This error was attributable to errors in estimating the

peak value of the covariance function and to differences between actual data values

and the averaged data values used in the covariance functions.

A final significant observation involved images like the one shown in Fig-

ure 3.15. The covariance function for this image is shown in Figure 3.16. The

covariance function for this image is much flatter than the others shown in this sec-

tion. Although there is a significant amount of covariance present in the image, the

slight slope of the covariance leads to a small value in the numerator of (3.12). As

demonstrated by the graph of Figure 3.17, this image has low values for FPy , com-

pared with other images in this section and filtering does not appreciably improve

the MSE of projection-based image registration for this image nor does it change

the FOM to the degree evident in the other images. This suggests that algorithm

performance is dependent not only on the magnitude of the covariance function but

is perhaps also dependent on the second derivative of the covariance function. This

relationship will be explored in future research.

In a second set of experiments, the operation of the algorithm with a series of

images taken by an actual aerial imaging system was examined. In these images,
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a two-lens bias reduction system was simulated. Before registration, the images

were preprocessed to detect and remove significant local biases caused by uneven

illumination and glare; however, high-frequency content was left intact. For the

types of illumination differences in the images, this was achieved by using very coarse

low-pass filtering to identify local image intensities, subtracting the result from the

original image, and then adjusting the image mean to the mean pixel value for the

ensemble of images. To this result AWGN was added with σ = 20 and the ability

to predict kernel size between similar frames was examined. Many frames included

significant homogeneous texture with some minor features such as shadows, roads,

drainage ditches and fences.

One frame was selected and a Monte Carlo simulation was performed that

measured the MSE for kernel sizes from 1 to 15 for 100 trials each (1500 total trials).

For this frame the calculated optimal kernel size was 4 which yielded an MSE of

zero. This result is shown graphically in Figure 3.19. Using data that included the

AWGN, verification was performed to confirm that FOM calculations predicted an

optimal kernel size of four. Other images in the series were examined to determine

whether FOM calculations performed using one frame could be used in other frames

in the series.

A frame from the series with similar but different image content is Figure 3.20.

Calculations of kernel size for Figs. 3.18 and 3.20 are shown in Figure 3.21. In a series

of 56 images, that the mean calculated kernel size was 3.6 with a standard deviation

of 1.89 and, as expected, those images that had the most similar content were the

most likely to have FPy , that were closely matched in shape if not in magnitude.

3.4 Chapter Summary

This chapter has provided a method for improving the performance of projection-

based image registration algorithms at minimal computational cost. It also explains

how low-pass filtering can exploit spatial correlations to improve the performance of
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image registration algorithms. The preceding sections have described an algorithm

that improves the performance of current projection-based image registration and

have described methods for choosing optimal parameters for the algorithm based on

measured data from the images being registered. They have also described experi-

ments conducted with actual test data that have confirmed the analytical results.

Transform-domain operations provide one mechanism for registering images

that are not only translated but also scaled or rotated; however, changes in scale or

rotation may also be detected and accounted for spatially. Use of the filtering method

described in this chapter with dilated or rotated images is one possible extension to

this research.

The correlation theory contained in this chapter may also be applied to a host

of other applications. An obvious extension to the work contained in this paper is

studying the effect that filtering has on two-dimensional correlation problems.
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Figure 3.9: Calculated FPy, and MSE
for the Pentagon image in Figure 4.1
with σnoise = 100, actual shift = 0. Note
the skewing of the estimates of FPy,

caused by estimation errors at the peak
covariance value. Errors are less evident
with additional averaging at larger ker-
nel sizes.
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Figure 3.10: Calculated FPy , and
MSE for the grass image in Figure 3.3
calculated without noise and again with
AWGN of σ = 100.

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

kernel size

M
S

E
 o

r 
F

P
y

Measured MSE
F

P
y

 from known covariance

F
P

y

 from estimated covariance

Figure 3.11: Calculated FPy, and
MSE for the sand image in Figure 3.5
with σnoise = 100, actual shift = 0.
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Figure 3.12: Calculated FPy , and
MSE for the water image in Figure 3.7
with σnoise = 100, actual shift = 0.
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Figure 3.13: Optimal spatial-domain
filtering kernel for the Pentagon image
in Figure 4.1.This is the Wiener filter
which is optimized to minimize the MSE
of the filtered image.
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Figure 3.14: Optimal spatial-domain
filtering kernel for the Brodatz water
image in Figure 3.7. This is the Wiener
filter which is optimized to minimize the
MSE of the filtered image.
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Figure 3.15: 512 × 512 Tank image
from http://sipi.usc.edu/database/.
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Figure 3.16: Calculated covariance
function for the 512 × 512 Tank image.
Note that these covariance functions are
more linear than others shown in this
chapter.
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Figure 3.17: Calculated FPy, and
MSE for the tank image in Figure 3.15
with AWGN of σ = 100.
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Figure 3.18: Aerial image of cornfield
from a sequential series of frames.
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Figure 3.19: Graph of kernel vs MSE
for the image of Figure 3.18 with AWGN
of σ = 20 when measuring an actual
shift of zero. The optimal kernel size
for this image is shown to be four.

Figure 3.20: An aerial image of a road
taken from the series.
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lated FPy, for the images in Figs. 3.18
and 3.20. Note that both FPy, peak at
Kernel Size = 4.
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IV. Bounds on Image Registration Algorithms

This chapter examines the limits on ability to register images using techniques

like the one described in Chapter III. This examination is performed using

theoretical bounds on image registration algorithms and the effects of filtering on

these algorithms. In this chapter, the examination of bounds on image registration

performance is extended by applying the Barankin bound to better account for the

effects of projecting and filtering images than the CRLB. The chapter also describes

bounds on registration in the presence of optical focal-length errors. Bounds on

the estimates of the motion of objects pictured within a frame are also discussed

since these are an important part of target tracking. Where lengthy derivations are

required, these are provided in Appendix A of the dissertation.

4.1 Performance Bounds on Image Registration With Filtered Projections

This section describes the bounds on the registration of a 1-D projection of

an image. As described in Chapter III, if an imaging sensor is used primarily for

motion estimation, image projections offer what is perhaps the fastest approach for

registering available images. The reduction in computational complexity realized

by using projections for motion estimation comes at a cost in accuracy. While

some literature cites this cost as “minimal” [45], this section provides a derivation

of equations that can be used to quantify the theoretical limits on the accuracy of

motion estimates derived using projection-based methods. This derivation is similar

to the one for the general CRLB found in [29].

The following assumes that images are periodic and band-limited, and that a

general filtering kernel H can be defined which is a positive-definite, circulant matrix.

Tα is circulant and circulant matrices commute, hence

(TαHi)(x) = (HTαi)(x) (4.1)
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An operator Dz is also defined which works as a convolutional differencing operator

across the dimension z. Dz is also circulant and commutes with Tα and H.

The derivation begins by describing the probability distribution function(PDF )

of any pixel in the image as [53]

p(D(x, y)|I(x, y)) =
1√
2πσ

exp

[
− 1

2σ2
(D(x, y)− I(x, y))2

]
. (4.2)

The PDF of a point in the y projection of the image can be written as

p(d1,y(x)|iy(x)) =
1√

2πNσ
exp

[
− 1

2σ2N
(d1,y(x)− iy(x))2

]
, (4.3)

and the PDF of the entire projection can be written as

p(d1,y|iy) =

(
1√

2πNσ

)N

exp

[
− 1

2σ2N
(d1,y − iy)

T (d1,y − iy)

]
. (4.4)

If fi,y is defined to be the projection of an image filtered by H,the PDF of the filtered

projection can be written as the linear transform

p(f1,y|iy) =

(
1√

2πNσ

)N

exp

[
− 1

2σ2N
(f1,y −Hiy)

TW−1(f1,y −Hiy)

]
, (4.5)

where σ2NW is the covariance matrix of the projected and filtered noise and W =

HHT = HTH. Similarly, if there is a second image which is identical to the first

except for a horizontal shift α, the PDF of this projection can be defined as

p(f2,y|iy, α) =

(
1√

2πNσ

)N

exp

[
− 1

2σ2N
(f2,y −HTαiy)

TW−1(f2,y −HTαiy)

]
.(4.6)

Combining (4.5) and (4.6) to find the joint probability of f1,y and f2,y yields

p(f1,y, f2,y|iy, α) =
( 1

2πNσ2

)N

exp
[
− 1

2σ2N

(
(f1,y −Hiy)

TW−1(f1,y −Hiy)

+(f2,y −HTαiy)
TW−1(f2,y −HTαiy)

) ]
. (4.7)
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4.1.1 The CRLB of Registration Using Image Projection. The examination

on bounds begins with the CRLB. Following the approach used in [48], (4.7) can be

used to create a block FIM J of the form:

J =


 Jαα Jαx

T

Jαx Jxx


 . (4.8)

In Appendix A.2.1 it is shown that under the assumption of circulant filtering ma-

trices, the Fisher information matrix(FIM) for the filtered projection is identical to

the FIM for the original data. Consequently, the FIM can be defined in terms of the

unfiltered projections as

Jαα = −E

[
∂2 ln p(d1,y,d2,y|iy, α)

∂α2

]
, (4.9)

Jαx = −E

[
∂2 ln p(d1,y,d2,y|iy, α)

∂α∂iy

]
, (4.10)

Jxx = −E

[
∂2 ln p(d1,y,d2,y|iy, α)

∂i2y

]
. (4.11)

As shown in Appendix A.2.1, the FIM can be inverted using block matrix techniques

to arrive at the result

VAR(α̂) ≥ 2σ2N
[‖Dxiy‖2

]−1
. (4.12)

This bound derivation using the nuisance parameters differs from the one derived

in [46] by a factor of two. This result is apparent for unfiltered images from work

in [48] and is suggested by work in [55], but is not explicitly stated in either document.

4.1.2 The Barankin Bound on Registration Using Projections. In the pre-

vious subsection, the filtering terms dropped out of the derived bounds. This is also

the case for the Barankin bound so the bounds are calculated using the unfiltered

PDF of the image. For this case, the FIM calculated using (4.8) is used as J, the
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FIM calculated as in the CRLB, and

L(d1,d2|Θi,Θo) = exp

[
1

2σ2N

[
(d2 − iy)

T (d2 − iy)− (d2 −Tαi
iy)

T (d2 −Tαi
iy)

]]
,

= exp

[
1

σ2N
dT

2 (Tαi
iy − iy)

]
, (4.13)

where Θo = iy is the true value of a projected image and Θi = Tαi
iy is a projected

image shifted by Tαi
. From (4.13), it follows that

Ai,j = E

[
∂ ln p(d|Θo)

∂Θo(i)
L(d|Θj,Θ0)

]
,

=





E
[

1
σ2N

(d2 −Tαiy)
T ∂Tαiy

∂α
exp

[
1

σ2N
dT

2 (Tαi
iy − iy)

]]
: i = 1

E
[

1
σ2N

[
(d1(n)− iy(n)) + Tα(d2(n)−Tαiy(n))dT

2 (Tαi
iy − iy)

]]
: i = n + 1,

= 0 ∀ i, j. (4.14)

The integer shifts of α1 = −1 and α2 = 1 are used as the most likely registration

errors and the Barankin bound is calculated using the equations derived in [37]

and [38]. The final terms required to calculate the bound for the given conditions

are

Bi,j = exp

[
1

σ2N

[
(iy −Tαi

iy)
T (

iy −Tαj
iy

)]]
, (4.15)

Φ =


 −1 1

Tα1iy Tα2iy


 . (4.16)

This yields the following form of the Barankin bound,

E[(Θ̂−Θ)2] = J−1 + ΦB−1ΦT . (4.17)

Because the bounds are clearly image dependent, numeric methods are em-

ployed. Results calculated using this bound are found in Section 4.3.
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4.2 Bounds of Two Dimensional Image Registration With Filtered Images

Image registration using all of the 2-D spatial information available in the image

is much more robust than registration using projections alone. This section derives

these bounds and also examines the case where a pre-detection image has been

corrupted by a focal-length error which is modeled as an optical filter. Consequently,

in the two-dimensional case, not only is the derivation slightly more mathematically

complicated, but there are also different filtering scenarios that can be accounted for

and different bounds that can be examined. In the two-dimensional case, these two

significant filtering scenarios are:

1. Optical filtering - filtering is performed in the optics before sensor noise is

added and

2. Post-detection filtering - filtering is performed on an image after sensor read-

out.

These two cases are derived jointly and the notation Hp is used to denote post-

detection filtering and Ho is used to denote optical filtering. Since this derivation

is similar to the one-dimensional case, it is included as an appendix; however, the

results are summarized in the following subsections.

4.2.1 2-D CRLB with Optical Filtering. The registration of two frames

of data, D1 and D2 as defined in (1.8) and (1.9) is examined first. The noise in

these frames (Q1 and Q2) is assumed to be spatially and temporally uncorrelated

and Gaussian. This noise model typifies fixed pattern noise and read noise in the

readout amplifier of a CCD that are typically the dominant noise sources in very-

low-intensity images [20], [25]. The natural logarithm of the joint probability of these
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two frames represented as vectors (1.8) and (1.9) can be written as

ln p(D1,D2|I) = − 1

2πσ2
(D1 −HpHoI)

TW−1(D1 −HpHoI)

− 1

2πσ2
(D2 −HpHoTα,βI)

TW−1(D2 −HpHoTα,βI)

+constant, (4.18)

where now W = HpHp
T = Hp

THp. Using the derivation found in Appendix Section

A.2.2, the CRLB for the 2-D case is found to be

VAR(α̂) ≥ 2σ2‖DyHoI‖2

‖DxHoI‖2‖DyHoI‖2 − 〈DxHoI,DyHoI〉2
, (4.19)

VAR(β̂) ≥ 2σ2‖DxHoI‖2

‖DxHoI‖2‖DyHoI‖2 − 〈DxHoI,DyHoI〉2
, (4.20)

where ‖.‖2 is the square of the L2 norm of a vector, 〈 , 〉 is the inner product of two

vectors, and I is a vectorized version of a 2-D image. In this case, as the size of the

filtering kernel increases, the magnitude of the the terms ‖DxHoI‖2 and ‖DyHoI‖2

decreases. Intuitively, as resolution is lost in the image, it becomes more difficult to

register. This, however, is not the case for filtering performed after detection since Hp

has dropped out of (4.19) and (4.20). It is interesting to note that although filtering

images has been shown to improve the performance of correlation and gradient-based

image registration [4], [39], [46], [47], the type of post-detection filtering performed

in these papers does not improve the CRLB. Rather, post-detection filtering is a

part of the estimation process that may yield performance approaching the bound.

4.2.2 2-D Barankin Bound. Looking at the two-dimensional case for optical

filtering, J is again the (N + 2)× (N + 2) FIM as derived for the CRLB. If the most

likely errors are expanded to include shift vectors of

[αi, βi] ∈ {[1 0], [−1 0], [0 1], [0 − 1]},
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then the matrix Φ can be constructed as

Φ =




−1 1 0 0

0 0 −1 1

Tα,βHoI|α=−1,β=0 Tα,βHoI|α=1,β=0 Tα,βHoI|α=0,β=−1 Tα,βHoI|α=0,β=1


 .

(4.21)

In this case the likelihood function is calculated as

L(D1,D2|Θi,Θo) =
p(D1,D2|HoTα,βI, αi, βi)

p(D1,D2|HoTα,βI, α = 0, β = 0)

= exp

[
1

σ2
DT

2 (HoTαi,βi
I−HoI)

]
. (4.22)

Beginning with (A.20), the partial derivatives of the log-likelihood functions are

∂ ln p(D1,D2|I, α, β)

∂α
=

1

σ2
(D2 −HoTα,βI)

T ∂HoTα,βI

∂α
,

∂ ln p(D1,D2|I, α, β)

∂β
=

1

σ2
(D2 −HoTα,βI)

T ∂HoTα,βI

∂β
,

∂ ln p(D1,D2|I, α, β)

∂I
=

1

σ2

[
HT (D1 −HoI) + (Tα,βHo)

T (D2 −HoTα,βI)
]
.

It is easy to see that, as with the one dimensional case, Ai,j = 0 ∀ i, j. Finally,

Bi,j = exp

[
1

σ2

[
(HoI−HoTαi,βi

I)T (
HoI−HoTαj,βj

I
)]]

, (4.23)

with which the Barankin bound can be calculated numerically as a function of the

CRLB from (A.34),

E[(Θ̂−Θ)2] ≥ J−1 + ΦB−1ΦT . (4.24)

Results for optically-filtered images calculated using this bound are found in Section

4.3.
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4.3 Experimental Results

To examine the effect of the calculated bounds on typical images, bounds were

calculated and examined for a standard image and for an ensemble of frames of

LIDAR data. Bounds were calculated numerically for different image sizes, different

image intensities and for varying registration methods. Bounds were specifically

examined for the registration of images when using projections of the images and for

the more robust case of 2-D image registration. The effects of focal-length errors on

the CRLB and the Barankin bound for the images were also examined. The results

obtained show that small image size, low illumination intensity, and focal-length

errors increase the relevance of the Barankin bound to registration estimates.

In the following discussion and graphs, 8-bit gray-scale images are employed

and the degree of noise in an image is measured using PSNR where the PSNR of an

S × T sized image is defined as:

PSNR = 10 log10

(
2552

1
ST
||I− Î||2F

)
, (4.25)

where I is the database image, Î is the corrupted version of the image, and ||...||F is

the Frobenius norm which is defined as the square root of the sum of the squares of

the elements of a matrix. For experimental LIDAR images, where images intensities

are measured by photon counts, the maximum value of the average frame is used in

place of 255 in the numerator of (4.25).

4.3.1 Registration Performance for Standard Pentagon Image. To simulate

low-SNR conditions that might be present in night-time or passive infrared (PIR)

filtering, the intensity of the image shown in Figure 4.1 was divided by 4 and then

corrupted with AWGN. For the original images, this produced pixel values in the

range [15, 60] where the maximum possible pixel value was 255.
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Figure 4.1: 1024× 1024 Pentagon im-
age from http://sipi.usc.edu/database/.
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Figure 4.2: Bound on the variance
of estimates of the x-shift for the im-
age shown in Figure 4.1 using both pro-
jections and 2-D registration. Bounds
for 2-D registration are lower than those
derived using projections. To simulate
low-light conditions, the pixel values of
the source image are divided by a factor
of 4.

4.3.1.1 Performance of Projection and Two-Dimensional Registration.

The Barankin bound and the CRLB were first calculated for the full image and

for a 128 × 128 subsection of the image shown in Figure 4.3, without any defocus

errors (i.e. Ho = I). For both the 1024× 1024 image, and the 128× 128 subsection,

the CRLB and the Barankin bound of 2-D horizonal shift estimates were the same,

for practical purposes. With less information, it was expected that the Barankin

bound would be more pronounced for the smaller image of Figure 4.3 and for the

projection bounds in general. This was, in fact, the case as shown by examining and

comparing the results of the analytical bound calculation shown in Figures 4.2 and

4.4. In both cases, the bound on estimates using projections is higher than those on

2-D estimates; however, the breakpoint of the Barankin bound occurs at the highest
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Figure 4.3: 128 × 128 subsection of
Figure 4.1.
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Figure 4.4: Calculated performance
bounds for registration using projec-
tions and 2-D registration for the 128
× 128 subsection of the Pentagon im-
age in Figure 4.3 where the intensities
of the source images have been divided
by a factor of 4.

SNR in the case of estimates for Figure 4.3. In general, the bounds on registration

using two-dimensional correlation were much lower than the bounds on registration

using 1-D projections and the deviation of the Barankin bound from the CRLB is

much less pronounced in 2-D filtering.

4.3.1.2 Bounds on Registration in the Presence of Defocus Errors.

Bounds on registration estimates were then calculated using the images of Figures 4.2

and 4.4. This required making some basic assumptions about the optical system un-

der study. The calculated bounds for the optical filtering case were performed using

an optical model based on specifications from a Celestron 14” (356 mm) Schmidt-

Cassegrain telescope operated at a range-to-objective of 20 km. This telescope has

a focal length of approximately four meters. Calculations were performed for light

with a wavelength of 0.5 µm. Measurements were then simulated of a diffraction-
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Figure 4.5: Image shown in Figure 4.1
with simulated 0.7λ defocus error.
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Figure 4.6: Bounds for the image
shown in Figure 4.1 with simulated 0,
0.1λ, 0.3λ, and 0.7λ defocus errors.
Note that the difference between the
bounds increases with increasing defo-
cus.

limited image with focal-length errors of 0 to 0.7 wavelengths in increments of 0.1

wavelengths. Representative defocused images are shown in Figures 4.5 and 4.7.

As shown in Figures 4.6 and 4.8, the bounds on shift estimates for both images

increased with increasing defocus error. Similarly, the Barankin bound became in-

creasingly relevant with increased defocus errors - especially in the case of the smaller

images. As before, the smaller image had higher overall bounds due to decreased

information content.

4.3.2 Registration Performance of Actual LIDAR data. Using insights

gained from the examination of standard test images, a series of 50 frames of LI-

DAR data captured using techniques and equipment described in [36] was examined.

These individual frames were median filtered to remove specular returns and spa-

tially registered using a two-dimensional cross-correlation. Then after filtering and
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Figure 4.7: Image shown in Figure 4.3
with simulated 0.7λ defocus error.
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Figure 4.8: Bounds for the image
shown in Figure 4.3 with simulated
0, 0.1λ, 0.3λ, and 0.7λ defocus er-
rors. Note that smaller image results in
bounds higher than those displayed Fig-
ure 4.6 and that the difference between
the bounds increases with increasing de-
focus.

registration, the frames were averaged to create a representative 256×256 diffraction-

limited image which was considered to be “truth” data. This resulting image is shown

in Figure 4.9 and a representative frame of data is shown in Fig. 4.10. Of particular

interest was the region of interest shown in Figure 4.11.

Using the frame average in conjunction with registration estimates of the in-

dividual frames, PSNRs were calculated for each of the 50 frames of data. The

calculated PSNRs for the frames ranged from 25.7 dB to 27.7 dB with a mean dB

value of 27.07 dB.

The frame average was also used to calculate theoretical bounds on the MSE

of registration estimates for the frames in the ensemble. Bounds on estimates of

column shifts of the frames using both projections and 2-D estimates for the full
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Projection-Based Registration 2-D Registration
Est PSNR Cramer-Rao Barankin Cramer-Rao Barankin

Full Image 26.3 dB 0.153 0.153 0.0089 0.0089
Region of Support 24.6 dB 0.790 0.953 0.0471 0.0471

Table 4.1: Calculated registration bounds for full frame and region of interest of

LIDAR data in units of pixels2.

image are shown graphically in Figure 4.13. The threshold for the Barankin bound

(the PSNR below which the bound diverges from the CRLB) is shown to occur

at an approximate PSNR of 23.5. The lowest PSNR was 25.7 dB which lies in

a region where the CRLB and the Barankin bound are coincident. Thus, for the

full frames, the CRLB is an adequate measure of the bound on projection-based

registration. Bounds were also calculated for registration estimates performed using

2-D shift estimation algorithms. As expected, bounds on variances on these estimates

were significantly lower than those calculated using projection-based methods. 2-D

bounds are also shown graphically in Figure 4.13. A comparison of the CRLB and

Barankin bounds for 1-D and 2-D image registration given the calculated PSNRs of

the LIDAR data is shown in Table 4.1.

For automatic target recognition problems, it is often necessary to identify

and estimate motion in a specific target among background clutter. For these ap-

plications, the ability to estimate motion of an object is also theoretically bounded.

Examination of these bounds began by selecting a subregion of interest within the

image shown in Figure 4.9. The target for this experiment was a 68 × 168 region of

interest shown in Figure 4.11. An estimate of the motion of the tank between consec-

utive frames depends on the ability to register the regions of interest in consecutive

frames. As shown in Figure 4.14, the bounds on registration with projections are

significantly higher than with 2-D registration techniques. It is also interesting to

note that the Barankin bound for registration using projections is approximately

30% higher than the CRLB within the range of PSNRs encountered in the data.
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Figure 4.9: 256 × 256 image resulting
from median filtering, and averaging 50
frames of LIDAR data captured at 10
km from the target. “Truth” Data (ap-
prox.)

Figure 4.10: Representative LIDAR
frame prior to filtering and averaging
(PSNR = 26.3).

Figure 4.11: 68 × 168 region of inter-
est within the image of Figure 4.9.

Figure 4.12: Representative region of
interest in a LIDAR frame prior to fil-
tering and averaging (PSNR = 24.6).

4.4 Chapter Summary

This chapter provided a calculation and comparison of theoretical performance

bounds for image registration algorithms. It showed that for large images under

conditions of full-frame registration, the CRLB is an adequate measure of perfor-

mance for most realistic imaging conditions. For projected, small images, or image

corrupted by focal-length errors, however, the CRLB may not sufficiently predict

bounds on the performance of a registration algorithm and the Barankin bound

provides a more accurate estimate.
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Figure 4.13: Bounds on registration
using projections and 2-D registration
of the LIDAR frame shown in Fig-
ure 4.9. The CRLB and Barankin
bound for the 2-D registration case are
indistinguishable.
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Figure 4.14: Bounds on registration
using projections of the LIDAR frame
region of interest shown in Figure 4.11.
For projection-based registration, the
breakpoint of the Barankin bound is ap-
proximately 29.0 which is well above the
PSNRs of the region of interest. In the
2-D registration, the breakpoint of the
Barankin bound falls far below the aver-
age PSNRs for the data. This indicates
that the CRLB is an adequate bound
for 2-D but not 1-D registration of this
data set.
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This chapter also showed that understanding of registration bounds is extended

by calculating the Barankin bound. Calculations for the Barankin bound were largely

numeric and were based on the most probable registration errors. For the images

examined, image registration using projections increased both the CRLB and the

Barakin bound as compared to bounds derived using 2-D registration algorithms.

However, it is also worth noting that Cain et al. [11] show that shift estimates for

low intensity images in the presence of fixed pattern noise may actually be better

using projections than full 2-D estimates. Bounds on this behavior would also make

an interesting future study.

It was also shown that for the test images, the CRLB and Barankin bounds

increased as the severity of the defocus errors increased. With this increasing defocus,

it was demonstrated that the Barankin bound became more pronounced and more

applicable to images with higher SNRs.

Perhaps the most interesting aspect of the research documented in this chapter

was that the bounds under study were most applicable to distortions of small images.

In many target-recognition applications, objects being imaged may be rotated and

dilated and salient features may be extracted using various filtering techniques. This

observation suggests many follow-on applications. For instance, the Barankin bound

may be of increasing importance to applications where images are aliased or in the

differentiation of multiple similar targets. Another interesting extension would be

the calculation of bounds on identification of objects and features with contrasting

colors under low light conditions. Other extensions to this research will be discussed

in Chapter VI of this dissertation.
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V. Block-based Methods for Denoising Images

Block-based denoising algorithms approach single-frame denoising using tech-

niques that are similar to the multiframe averaging techniques facilitated by

image registration. This chapter introduces several new block-based denoising algo-

rithms that produce impressive results, especially in low-SNR scenarios.

The methods that are presented in this chapter begin by thresholding the

variance of individual blocks to identify areas that are effectively handled by standard

image processing techniques. Like the method proposed by Kervrann and Boulanger

[31], the methods described here use the Euclidian distance between blocks and

develop a threshold based on the chi-square distribution to identify matching blocks.

Unlike the method proposed by Kervarann and Boulanger, the methods used in this

chapter use fast approximations for determining these thresholds, examine block

correlations and higher order statistics of the error function to match blocks with

similar content, and rely on a simple binary weighting scheme to combine blocks

in a way that produces a denoised estimate of a region of interest. These new

methods also improve on low-SNR performance of other methods by suspending the

requirement for comparative blocks to be spatially close. This allows combining data

from across an entire image and, in fact, could facilitate combining data from entirely

different image frames from the same sensor.

5.1 The Gaussian Detection Denoising Method

Using the mathematical background described in Appendix B, the NLM al-

gorithm was modified to improve its performance. This section describes how the

new algorithm was formulated and implemented to improves the performance of the

NLM algorithm. The method exploits redundancy in the image and improves on

both the theoretical foundation and the output of the NLM algorithm. This new

algorithm which will heretofore be known as the “Gaussian Detection Denoising”
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or GDD method. The algorithm is briefly described below and will be explained in

detail later in this section.

5.1.1 Overview of the GDD Denoising Method.

1. Begin with an image of size S × T .

2. Select an N ×N -sized subimage centered at (i, j) within the image to denoise.

Call this block Fi,j.

3. For every pixel centered at (s, t) in the parent image, define a neighborhood

around the pixel and call this neighborhood the block Gs,t.

4. Subtract the means from Fi,j and all Gs,t blocks.

5. For all Gs,t calculate the scalar A(s, t) that minimizes the mean-squared er-

ror between Fi,j and A(s, t)Gs,t.

6. For all Gs,t calculate the mean square of Fi,j − A(s, t)Gs,t. Call this value

MSE(s, t).

7. Examine the distribution of MSE(s, t) for all s and t. Determine if it has

a Gaussian distribution or if it is possible to detect a subset of MSEs that

naturally form a Gaussian distribution.

8. If no Gaussian exists, use the original value of Fi,j (not just the center pixel)

as the denoised value.

9. If a Gaussian does exist, average the values of Fi,j and the Gs,t blocks that

form the Gaussian. Call this averaged block the new value for Fi,j.

10. Restore the mean to the block Fi,j. This is the denoised value of Fi,j.

11. Repeat steps 2-10 for other blocks in the image as desired.

12. Recombine the individual blocks Fi,j.
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5.1.2 GDD Preliminary Assumptions and Calculations. To consider the

algorithm in more detail, suppose that there exists an image D, a region of interest

defined Fi,j, and subimages used for comparison defined as Gs,t as in Section 2.3.

Furthermore, call the index of each pixel in these subimages (u, v) where u ∈ U ,
{1, ..., N} and v ∈ V , {1, ..., N}. To remove illumination and reflectance differences,

the means are removed from both the Fi,j and Gs,t. That is, for all values of F and

G indexed by x and y:

F̂i,j(x, y) = Fi,j(x, y)− 1

N2

∑

u∈U,v∈V

Fi,j(u, v), (5.1)

and

Ĝs,t(x, y) = Gs,t(x, y)− 1

N2

∑

u∈U,v∈V

Gs,t(u, v) ∀ Gs,t ∈ D. (5.2)

Then define

GDD(F̂i,j) =

∑

s∈S,t∈T

A(s, t)Ĝs,t

∑

s∈S,t∈T

A(s, t)
. (5.3)

It is desirable to use weights that are not necessarily dependent on a priori knowledge

of the noise. Instead of attempting to calculate a unique weight for each Ĝs,t, two

hypotheses are posed:

H1 :
∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F
≈ ‖Qi,j −Qs,t‖2

F , (5.4)

H0 :
∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F
6≈ ‖Qi,j −Qs,t‖2

F . (5.5)

In (5.4) and (5.5), Qi,j and Qs,t are realizations of the noise in Ĝs,t and F̂i,j. In other

words, on average, H1 corresponds to the case when Ĝs,t and F̂i,j are approximately
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identical but differ by AWGN and H0 corresponds to the case when the difference

between Ĝs,t and F̂i,j is greater than that attributable to noise.

The problem with using these hypotheses is that the only available data is

on the left hand sides of (5.4) and (5.5) and consequently, it is not possible to

develop a traditional likelihood ratio test. However, using the background provided

in Appendix B, it is possible to develop an alternate test which allows a rough

differentiation between these two cases. As discussed in Appendix B, if there exist

a Ĝs,t such that
∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F
≈ ‖Qi,j −Qs,t‖2

F , then the distribution of the MSEs

of
∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F
will be a noncentral chi-square distribution. Without a priori

knowledge of the distribution of the noise it is not possible to estimate λ; however, ν

corresponds to the number of pixels in Fi,j and Gs,t. As ν increases towards infinity,

the shape of the distribution χ
′2
ν (λ) becomes Gaussian as demonstrated graphically

in Figure 5.1. Therefore, if ν is chosen to be sufficiently large, it is expected that

when Fi,j and Gs,t are approximately equal except for additive noise, the distribution

of MSEs between Fi,j and Gs,t will be Gaussian. Therefore, the two hypotheses are

reposed as follows:

H1 :
∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F

∈
{∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F
|

∥∥∥F̂i,j − Ĝs,t

∥∥∥
2

F
forms a Gaussian distribution

}
(5.6)

H0 : else. (5.7)

As described in more detail in Section 5.1.3, the GDD algorithm will determines this

hypothesis by iteratively setting a threshold within the MSEs of each block Fi,j and

testing to see whether the distribution of MSEs below this threshold is Gaussian.

When Ĝs,t ≡ F̂i,j, it also assumes H1. Using the two hypotheses, it is then possible
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to assign a binary weight to A(s, t) such that

H1 ⇒ A(s, t) = 1,

H0 ⇒ A(s, t) = 0.

5.1.3 Observed Distribution of Mean Squared Errors. For a given image

D, examining the histogram of the MSEs between a single F̂i,j and all other Ĝs,t,

yields something that may be similar in appearance to Figure 5.2. As noted, when

F̂i,j and Ĝs,t are sufficiently large, if there is sufficient redundancy in the image, the

distribution of the MSEs will be a combination of two distributions, one of which

is a χ
′2
ν (λ) distribution that approximates a Gaussian. This is demonstrated in

Figure 5.1. If he variance of the noise is known, the λ and the location of E[χ
′2
ν (λ)]

can be estimated. In the absence of this knowledge, it may be possible to locate

a Gaussian distribution in the distribution of the Mean Squared Errors by scaling

the MSEs and using an iterative process to detect a Gaussian distribution. The

subimages, Ĝs,t, with MSEs that lie in this Gaussian distribution are considered as

satisfying H1.

5.1.3.1 Detection of H1 and H0. To perform this separation, first

find a constant A(s, t) for each Ĝs,t that minimizes the MSE between F̂i,j and

A(s, t)Ĝs,t. This can be accomplished by minimizing the quantity

MSE =
1

N2

∥∥∥F̂i,j −A(s, t)Ĝs,t

∥∥∥
2

F
.

When this equation is expanded out, it yields the following where the notation 〈F,G〉
indicates an inner product and <{} indicates taking the real part of a complex

number

MSE =
1

N2

(∥∥∥F̂i,j

∥∥∥
2

F
− 2A(s, t)<

{〈
Fi,j, Ĝs,t

〉}
+ A(s, t)2

∥∥∥Ĝs,t

∥∥∥
2

F

)
.
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Figure 5.1: Graph of the PDF χ
′2
225(0) over 0 ≤ x ≤ 500 which

occurs for N = 15.

For intensity images (i.e. I = <{I}), setting the first derivative of this equation

equal to zero and solving for A(s, t) produces

A(s, t) =

〈
F̂i,j, Ĝs,t

〉

∥∥∥Ĝs,t

∥∥∥
2

F

. (5.8)

If the histogram resulting from the calculation of MSE is examined for all values

of A(s, t) and Ĝs,t, a distribution is arrived at that appears similar to Figure 5.3

which has an upper bound of
∥∥∥F̂i,j

∥∥∥
2

F
/N2. Subimages Ĝs,t that are substantially

different from F̂i,j will tend to be minimized by A(s, t) and will have MSEs that fall

close to the upper bound of the histogram. Subimages that satisfy H1, if they exist,

will be found in the tail of the distribution. If the variance of the noise is known,

one can predict a range for this Gaussian, but in the absence of this knowledge it

is necessary to rely on an iterative process to eliminate Ĝs,t that do not form a

Gaussian distribution.
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Figure 5.2: Histogram of the Mean Squared Error between

a representative F̂i,j and all Ĝs,t. No scaling factor has been

applied to Ĝs,t.

Beginning at the upper bound of the histogram of the MSEs, test the dis-

tribution of the MSEs that are less than γ using the Lilliefors test for normality,

described in [18]. If the distribution is Gaussian, assign A(s, t) = 1 for all Ĝs,t.

If not, set {A(s, t) = 0 | γ ≤
∥∥∥F̂i,j −A(s, t)Ĝs,t

∥∥∥
2

F
≤

∥∥∥F̂i,j

∥∥∥
2

F
} and {A(s, t) =

1|
∥∥∥F̂i,j −A(s, t)Ĝs,t

∥∥∥
2

F
< γ} and reapply the Lilliefors test. Then, select γ based

on the amount of processing time desired. This step is iterated for decreasing values

of γ until either satisfied the Lilliefors test is satisfied for some number of Ĝs,t or all

Ĝs,t have been eliminated as potential matches for F̂i,j. In this way, for each F̂i,j, a

value for GDD(F̂i,j) =
〈
A(s, t)Ĝs,t

〉
is determined.

5.1.3.2 Image Restoration. To complete the algorithm for a single

subimage, the block mean is restored by calculating

ˆ̂
Fi,j = GDD(F̂i,j) +

1

N2

∑

u∈U,v∈V

Fi,j(u, v).
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It is then necessary to restore the image from
ˆ̂
Fi,j over all (i, j). One simple way to

approach this is to use the restoration approach of the NLM and say

Î(i, j) =
ˆ̂
Fi,j(n + 1, n + 1).

The problem with this approach in the GDD is that the original calculation of F̂i,j

involved subtracting the block mean. As discussed in Appendix B, the sample mean

for a block of zero mean noise is subject to some variation. Consequently, some

portion of
ˆ̂
Fi,j is still attributable to noise. Experimentally it was determined that

it is advantageous to restore the image by summing and then averaging overlapping

ˆ̂
Fi,j across the entire image.

It is also possible, and computationally advantageous, to obtain good results

by denoising a subset of all possible Fi,j and combining these to form a single im-

age. For example, in a 150×150 sized image, it would be possible to denoise 100

non-overlapping 15×15 blocks and recombine them to form a single image. The

disadvantage to this approach is that the recombined images have undesirable dis-

continuities at the edges of the block due to an uneven restoration of the means.

These discontinuities can be mitigated by choosing a latticed and overlapping set of

Fi,j and averaging their denoised values together. This averaging makes the disconti-

nuities between blocks less detectable and less objectionable as shown in Figure 5.10.

5.1.4 Experimental Results with the GDD Algorithm. The algorithm was

used on simulated data and the results were compared with results obtained using

the NLM algorithm. The date used for the test was a Light-Radar (LIDAR) image

of a truck-mounted resolution board as a truth image (Figure 5.4) which was then

corrupted with AWGN with σ = 25. The resulting noisy image is shown in Figure 5.5,

and the histogram of the noisy image is shown in Figure 5.6. A 15 × 15 subimage

was used for Fi,j to obtain the results shown in (Figure 5.7) for the NLM algorithm

and (Figure 5.8) for the GDD method.
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Figure 5.3: Histogram resulting from the calculation of∥∥∥F̂i,j −A(s, t)Ĝs,t

∥∥∥
2

F
for a single F̂i,j and all values of

A(s, t)Ĝs,t. Note the difference from Figure 5.2 caused by ap-
plying the scaling factor A(s, t).

For the test image employed, the SNR provides a fair comparison of these two

techniques. Annotating the truth image as I, the mean of the truth image as Ī, the

image being denoised as D, and the output of the denoising algorithm as Î, the SNR

of the noisy image is calculated as

SNR =

∥∥I− Ī
∥∥2

F

‖I−D‖2
F

.

The SNR of the denoised image is calculated as

SNR =

∥∥I− Ī
∥∥2

F∥∥∥I− Î
∥∥∥

2

F

.

The SNR of the original image after corruption with noise of σ = 25 was 20.92. Using

the NLM algorithm, an SNR of 27.97 was achieved. Using the proposed method,
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Figure 5.4: Truth image used to generate the simulation data.
The bar to the right of the image indicates pixel values.

an SNR of 41.77 was achieved which represented a 49% improvement over the NLM

algorithm.

Image denoising was also attempted using alternative strategies in an attempt

to minimize the computational complexity by minimizing the number of Fi,j used in

the algorithm. A first attempt was made to select Fi,j that were mutually exclusive.

For an a 101 × 101 image with zero padding, it was possible to denoise the image

using 49 versions of Fi,j and 10201 versions of Gs,t. The results of this denoising

are shown in Figure 5.9. Although the SNR in this case was 34.24, the image

contained discontinuities resulting from the mean restoration process. In an attempt

to minimize these discontinuities, an overlapping lattice of 98 Fi,j was used with

10201 Gs,t. The results were then locally averaged together to form the image in in

Figure 5.10 which has an SNR of 43.81.
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Figure 5.5: Truth image with AWGN of σ = 25 added.

5.1.5 Conclusions Drawn from Initial Results. This section introduced a

unique image processing algorithm. Although it improved over results obtained using

the NLM algorithm, it more importantly provided additional research opportunities.

Notably, the chi-square distribution becomes more pronounced with fewer degrees

of freedom and the probability of statistically similar blocks is expected to increase

for smaller block sizes. By decreasing the neighborhood to some optimal size, it is

expected that the performance of the algorithm can be improved. In addition, the

results reflected here do not account for the averaging of permutations (e.g. rota-

tions and translations) of Gs,t blocks which may provide an additional performance

improvement.
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Figure 5.6: Histogram of the noisy image.

This implementation also assumed no a priori knowledge of the noise distri-

bution; however, in many applications the distribution can be obtained through

measurements of output from a given imaging system.

One significant problem with this method was that it was computationally

expensive and processing times were significant for even small images. A second

problem is that the results, while good, are less impressive than other state-of-the-

art denoising methods. Consequently, other algorithms were developed.

5.2 The HOD and XCD Denoising Algorithms

This section describes two additional novel methods for denoising images. The

algorithms operate by identifying regions of interest within a noise-corrupted image

and then creating noise free estimates of the regions as averages of similar regions

in the image. These similar regions are found by comparing examining the statistics

of the error functions between the given region and other, identically sized regions

in either the same image or in other images from the same sensor. The statistically
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Figure 5.7: Output obtained using the NLM algorithm. SNR
for this image was 27.97.

similar regions are averaged together to produce an estimate of the noise-free version

of the region of interest. This technique is similar to multiframe averaging; however,

only a single frame is required. The techniques are shown to outperform Wiener

and median filtering over a wide range of noise conditions but are most effective in

images with very low signal-to-noise ratios.

Section 5.2.1 describes a denoising method that denoises images using the first,

second and third moments of regions within the image. Then, Section 5.2.2 describes

a denoising method that uses the first and second moments of the data in concert

with fast projection-based cross-correlations. Section 5.2.3 describes the algorithms

and performance in comparison to Wiener filtering [26] and median filtering [26]
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Figure 5.8: Output obtained using the GDD method. SNR
for this image was 41.77.

when used on standard benchmark images as well as on actual LIDAR data with a

simulated noise component.

5.2.1 Higher-Order Statistics Method for Block Matching. This section

discusses using a method that employs the variances of the blocks and the skewness

of their error functions as measures of block similarity. This algorithm is refered

to as the Higher-Order Denoising (HOD) algorithm. This algorithm looks at the

second moment of the block and pairs of blocks whose error function has a third-

order moment indicative of a Gaussian distribution. A summary overview of the

algorithm is provided followed by the details of the algorithm.
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Figure 5.9: Output obtained by GDD denoising using 49 of
10201 possible 15 × 15 blocks. Note the block discontinuities
that are similar to those obtained in JPEG restoration.

5.2.1.1 Overview of the Denoising Algorithm based on Higher Order

Statistics.

1. Within an image D, select an N ×N -sized subimage indexed at the pixel (i, j)

within the image to denoise. Call this block Fi,j.

2. Develop estimates for the maximum variance of flat regions of the image, the

maximum variance of the error between two featureless blocks, and the skew-

ness of an ensemble of noise values.

3. For every pixel centered at (s, t) in the parent image, define an N ×N neigh-

borhood around the pixel and call this block Gs,t.
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Figure 5.10: Output obtained by GDD denoising using an
overlapping lattice of 98 of 10201 possible 15 × 15 blocks. Dis-
continuities still exist but are less objectionable than in Fig-
ure 5.9.

4. Subtract the means from all Fi,j and all Gs,t.

5. For each block Fi,j, evaluate whether the variance of the block is less than the

upper limit of the variance of a block of noise only. If so, set the entire block

to the block mean (i.e. zero).

6. If the variance of the block is above the threshold used in 5) above, calculate

the error between the block and all other blocks in the image. If the vari-

ance and skewness of the error function between Fi,j and any Gs,t are within

the allowable thresholds, include Gs,t in an average of blocks. Calculate the

processed block as the average of Fi,j and all identified Gs,t.
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7. Add the mean of the original block to the processed block. This is the restored

block.

8. Repeat steps 1-7 for all other blocks Fi,j in the image.

9. Reconstruct the image as an average of all the overlapping restored blocks

across the image.

5.2.1.2 Description of the Higher Order Statistical Denoising (HOD)

Algorithm. In this subsection a more detailed overview of the image model,

underlying assumptions, and the mathematical framework of the HOD algorithm is

provided. The image model assumes that the predominate noise source is Additive

White Gaussian Noise (AWGN) and that the noise is independent and identically

distributed in each pixel. Define Ii,j as a diffraction-limited, N×N block of an image

where N ∈ N and N > 1. The coordinate pair (i, j) indicates the location of center

pixel of the neighborhood Ii,j within a larger image I (i.e. Ii,j ⊂ I). If I is corrupted

by zero-mean Gaussian noise so that for each pixel, Ii,j(u, v) where u ∈ {1, ..., N}
and v ∈ {1, ..., N}, then

Di,j(u, v) = Ii,j(u, v) + Qi,j(u, v),

where Di,j is a subimage centered at (i, j) and Qi,j is the realization of the Gaussian

noise within that subimage. In matrix notation, this can be denoted as

Di,j = Ii,j + Qi,j.

Within an image, there may be other N × N blocks centered at coordinates (s, t)

that satisfy the equation

Ds,t = Ii,j + Qs,t.
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If these subimages exist, then ∆s,t, the error between Di,j and Ds,t, can be calculated

∆s,t = Di,j −Ds,t

= (Ii,j + Qi,j)− (Ii,j + Qs,t),

= Qi,j −Qs,t. (5.9)

For a single pixel in ∆,

∆s,t(u, v) = Qi,j(u, v)−Qs,t(u, v).

The noise characteristics of most individual sensors can be determined by em-

pirical measurement and it is reasonable to assume that this information is available

to the algorithm. In the algorithm proposed in this section, it is assumed that the

variance of the predominant noise in the image a priori is known. Given the vari-

ance of the noise, σ, the statistical characteristics of ∆ can be used to identify and

average similar blocks in a given image. The values of the moments of Q and ∆

can be viewed as random variables and it is then possible to select matching blocks

based on the values of these moments. For example, σ2
Q, the variance of an N ×N ,

zero mean, block of noise Q can be calculated as:

σ2
Q =

〈
Q2

n

〉
, (5.10)

where Q2
n represents squares of the individual elements of an N × N block Q. As-

suming that the noise in the image is AWGN, this sum of terms is recognized to be

a chi-square random variable.

Recalling that the limiting case of the chi-square distribution as N tends to

infinity is a Gaussian distribution [28], the PDF of the variance of the measured noise

in a block Q may be approximated as a Gaussian with µ = σ2 and σ2
Q = 2σ4/N2.

Using this approach, calculate three standard deviations from µ and roughly predict

79



the upper bound on the PDF of the variance of Q as

σ2
max = σ2 + 3

√
2σ4

N2
. (5.11)

A similar approach can be used to estimate the upper bound of the PDF of the

variance of ∆ which is denoted σ2
∆max

. This bound can be calculated as

σ2
∆max

= 2σ2
Q + 3

√
8σ4

Q

N2
. (5.12)

More precise methods for determining the quartiles of a chi-square distribution are

described in [28] but for this application more precise methods appear unnecessary

for most block sizes.

Estimation of the skewness for a block of noise is more difficult as it involves the

calculation of the third central moment of an ensemble of Gaussian random variables,

however, a Monte Carlo simulation was employed to arrive at a polynomial function

of block size to estimate skewness. Figure 5.11 shows the results of the Monte Carlo

simulation and shows the measured maximum skewness for various block sizes and

noise values. This maximum skewness is independent of the variance of the noise.

The magnitude of the bound on the skewness of the error function is represented as

Smax, where the skewness of an ensemble of random variables Q of size n × n and

with mean µQ is defined as

SQ =
N4

∑n
i=1

∑n
j=1(Q(i, j)− µQ)3

(
∑n

i=1

∑n
j=1(Q(i, j)− µQ)2)3

. (5.13)

Once these limits are determined, processing of the image can begin. Define an

image D of size S×T where S ∈ N and T ∈ N. Also, take an N ×N -sized subimage

Fi,j ⊂ D where Fi,j is centered at i ∈ S , {1, ..., S}, j ∈ T , {1, ..., T} and where

{N = 2n + 1 | n ∈ N}. If the image D is zero padded by n in all directions,

then for all s ∈ S and t ∈ T, there are N2 − 1 other subimages in D which may

80



2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Square Root of Block Size

M
ax

im
um

 S
ke

w
ne

ss

Mean
Maximum
Minimum

Figure 5.11: Plot of the measured maximum skewness vs. N - the square root
of the block size. The plot displays the mean, maximum and minimum measured
values of maximum skewness for various block sizes of AWGN with σQ = 5 to 150.

be similar in an L2-norm sense to F and one subimage where s = i and t = j.

These subimages are denoted Gs,t. Furthermore, call the index of each pixel in these

subimages (u, v) where u ∈ U , {1, ..., N} and v ∈ V , {1, ..., N}. In an attempt to

remove illumination and reflectance differences, the means are removed from both

the Fi,j and Gs,t. For all x and y:

F̂i,j(x, y) = Fi,j(x, y)− 1

N2

∑

u∈U,v∈V

Fi,j(u, v) (5.14)

and

Ĝs,t(x, y) = Gs,t(x, y)− 1

N2

∑

u∈U,v∈V

Gs,t(u, v) ∀ s ∈ S, t ∈ T. (5.15)

Most natural images have significant low-frequency content that can be de-

noised using first-order statistics. Where the measured variance of a block is less
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than the maximum expected variance of a block of noise, a denoised version is of

the block is estimated by replacing all the pixels of the block with the block mean.

Specifically, for any block Fi,j that has σ2
Fi,j

< σ2
max, a noiseless version of each pixel

in Fi,j is estimated as

HOD(Fi,j)(u, v) =
1

N2

∑

u∈U,v∈V

Fi,j(u, v). (5.16)

Regions that have significant high frequency content are denoised by identifying

and averaging a subset of blocks Gs,t that have similar statistical characteristics.

This set of blocks with similar characteristics is represented as B and the s, t pair

corresponding to a member of B is as β. A denoised version of block Fi,j is then

constructed as

HOD(Fi,j) =
1

|B|+ 1

(
F̂i,j + Σβ∈BĜs,t

)
+

1

N2

∑

u∈U,v∈V

Fi,j(u, v), (5.17)

where the last term is the mean that was previously subtracted in (5.14). Given the

error vector between two blocks ∆s,t with mean µ∆s,t , the members of B are those

Ĝs,t where

1

N2

∑

u∈U,v∈V

(∆s,t(u, v)− µ∆s,t)
2 < σ2

∆max
, (5.18)

and where the skewness of the error function is evaluated to determine if

∣∣∣∣∣
N4

∑
u∈U,v∈V(∆s,t(u, v)− µ∆s,t)

3

(
∑

u∈U,v∈V(∆s,t(u, v)− µ∆s,t)
2)3

∣∣∣∣∣ < |Smax|. (5.19)

Using this approach, all F̂i,j in an image are evaluated against all Ĝs,t. An estimate

of the noise-free image must now be created from the noise free estimates of the

individual blocks in the image. The algorithm concludes by reconstructing the image

as the average of all overlapping blocks HOD(Fi,j).
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5.2.2 Correlation-Based Method for Block Matching. This section discusses

using a method that employs the variances of the blocks and their error functions in

conjunction with a method for evaluating the similarity of the blocks based on their

cross correlation peaks. This method is referred to as the cross correlation denoising

(XCD) algorithm. The algorithm looks at the second moment of the block and

evaluates whether comparative blocks are spatially correlated with the block under

study. In an effort to reduce processing time, the algorithm replaces the calculation

of the third moment with a projection-based correlation to determine whether or not

the peak correlation of two blocks is located at the center of their cross correlation.

5.2.2.1 Overview of the Cross Correlation Denoising Algorithm.

Most steps of the XCD algorithm are identical to those in the HOD algorithm de-

scribed in section 5.2.1; however, instead of calculating the skewness of the error

vector between two blocks in step 6, the algorithm uses the projections of the blocks

to calculate their cross correlations and observe the location of the cross correlation

peak. The processing steps of the XCD algorithm are:

1. Within an image D, select an N × N -sized subimage indexed at (i, j) within

the image to denoise. Call this block Fi,j.

2. Develop estimates for the maximum variance of flat regions of the image and

the maximum variance of the error between two featureless blocks.

3. For every pixel centered at (s, t) in the parent image, define an N ×N neigh-

borhood around the pixel and call this block Gs,t.

4. Subtract the means from all the blocks.

5. For each block, evaluate whether the variance of the block is less than the

upper limit of the variance of a block of noise only. If so, set the entire block

to the block mean.
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6. If the variance of the block is above the threshold used above, calculate the

error between the block and all other blocks in the image. If the variance of the

error function between Fi,j and any Gs,t are within the allowable thresholds,

calculate the cross correlations of the projections. If the cross-correlation peaks

of the projections are in their centers, include Gs,t in an average of blocks.

Calculate the processed block as the average of Fi,j and all identified Gs,t.

7. Add the mean of the original block to the processed block. This is the restored

block.

8. Repeat step 1-7 for all other blocks in the image.

9. Reconstruct the image as an average of all the restored blocks in the image.

5.2.2.2 Description of the Correlation-Based Denoising (XCD) Method

for Block Matching. An alternative method of block selection, which is also based

on L2 distance, is also effective. In many cases, blocks within an image are most

similar, in an L2 sense, to shifted versions of themselves. Although these shifted

blocks are close in L2 distance, they may introduce structurally different blocks

into a block average thereby biasing the result. This is especially true along edges

of image features. When the shift is in the direction of an edge, this contributes

constructively to a block averaging algorithm. When the shift is perpendicular to

an edge but the resulting block is close in L2 distance, it has the effect of smoothing

the edges in a denoised block and thereby reducing high-frequency image content.

Blocks that are close in L2 distance may be predicted by looking at the au-

tocorrelation of a block being denoised. The primary peak of the autocorrelation

corresponds to the [0, 0] shift. The subpeaks with magnitudes less than the primary

peak correspond to the center pixels of blocks whose that are shifted versions of a

block of interest and are close that block in L2 distance. This observation suggests

that it may be possible to find blocks that have similar content by considering the

location of the peak of the cross correlation of two blocks that are close in L2 dis-
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tance. This may be a computationally expensive approach; however, good results

can be attained while minimizing computational load by using 1-D projection-based

cross-correlations instead of 2-D cross-correlations.

For image registration applications, Cain et al. [11] described an algorithm that

uses the x and y projections of an image to find their 2-D cross correlation peak. In

this algorithm, the cross-correlation peaks of the one-dimensional projections of two

images corresponds to the x and y coordinates of the 2-D cross correlation. This is

shown to be a computationally-efficient alternative to the more traditional approach

of finding the two-dimensional cross-correlation peak of the images. In order to

exploit the computational efficiency of this approach in the XCD algorithm, the x

and y projections are of each block are calculated as a preprocessing step when the

blocks are created. Then, for each Fi,j,Gs,t pair whose measured variance is below

the calculated maximum allowable variance, it is necessary to calculate two, 1-D

cross correlations. For a given Gs,t, if the cross correlation peak is centered in both

1-D cross correlations, Gs,t is included in the average of similar blocks.

Another set of blocks with
〈
∆2

s,t

〉
< σ2

∆max
can now be constructed that have

centered cross-correlation peaks for both row and column projections. This set is

denoted Γ and the s, t pair corresponding to a member of Γ is γ. Using the set Γ, a

denoised version of block Fi,j can be constructed as

XCD(Fi,j) =
1

|Γ|+ 1

(
F̂i,j + Σγ∈ΓĜs,t

)
+

1

N2

∑

u∈U,v∈V

Fi,j(u, v). (5.20)

As in the previous section, the restored image is constructed as an average of all the

denoised estimates of the blocks.

5.2.3 HOD and XCD Simulation Results. This section presents results us-

ing LIDAR and standard benchmark images as truth with additive Gaussian noise.

These results demonstrate that the HOD and XCD denoising methods can suc-
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Figure 5.12: Graph of results comparing output of HOD filtering, XCD filtering,
Wiener filtering and median filtering of the 101 × 101 image shown in Figure 5.5
over a wide range of noise values. Typical block sizes (6×6) are chosen for the HOD
and XCD algorithm. The line in the graph labelled “Input PSNR = Output PSNR”
shows the point where denoising methods produce results with lower PSNR than the
original image. The HOD and XCD methods approach but do not reach this line.

cessfully denoise images with results that are consistently favorable to Wiener and

median filtering and on par with many wavelet denoising methods. In the following

discussion and graphs, results are presented using PSNR where the PSNR of an

S × T sized image is defined as:

PSNR = 10 log10

(
(I2

max)
1

ST
||I− Î||2F

)
, (5.21)

where I is the diffraction-limited image, Î is an estimate of the image, Imax is the

maximum value found in the image I.

The performance of the algorithm was examined using various images. The

variable parameters in these simulations were the individual images, the variance

of the AWGN and the block sizes used in the denoising algorithms. Results are

presented for each of the two algorithms.
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put for a 101 × 101 image. For each
block size, the image was corrupted with
ten noise realizations of σnoise = 110
(mean input PSNR = 23.26) and de-
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mean PSNRs for 10 runs using each
block size are plotted.
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Figure 5.14: Block size vs. XCD out-
put for the 101 × 101 image. As in 5.13,
the image was corrupted with ten noise
realization of σnoise = 110 (mean input
PSNR = 23.26) and denoised. The max-
imum, minimum and mean PSNRs for
10 runs using each block size are plot-
ted.
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Experimentation began with the LIDAR image shown in Figure 5.5 and ex-

amined the effectiveness of the algorithm with various block sizes and noise values.

The results of the algorithms across a range of input noise values are shown in Fig-

ure 5.12. This graph shows the results in comparison to optimally-sized Wiener and

median filters. The diagonal lines across the graph indicates the point where the out-

put PSNR is equal to the input PSNR. To the right of this line, output PSNRs are

less than input PSNRs indicating that Wiener filtering and median filtering actually

degrade the image. On the left hand side of the diagonal line lies the region where

all three algorithms improve the PSNR of an input image. The HOD and XCD al-

gorithms outperform the optimally-sized Wiener and median filters (as implemented

by MATLAB 7.1) across this region.

Output performance is also dependent upon block size. In (5.17) and (5.20), for

any given block Fi,j the results of the algorithm are dependent upon the number of

blocks Gs,t that contribute to the average in HOD(Fi,j) and XCD(Fi,j). Recalling

that the data model is Di,j = Ii,j + Qi,j, an average of blocks with identical I

but different Q is expected to converge to I as the number of blocks increases. In

general, at small block sizes, it is more likely to find blocks Gs,t that are similar

in underlying content to Fi,j; however, a small sample size is not as likely to have

higher-order statistics that are predicted by the model. As the block size increases,

confident in the statistics increases, but it becomes less probable that blocks can be

found with matching image content.

The graphs in Figure 5.13 and Figure 5.14 demonstrate the trade-off involved

in choosing block size for the image shown in Figure 5.5 corrupted by AWGN. The

graphs show the maximum, minimum and mean values for the output of ten different

realizations of noise across various block sizes. For this image the optimal block size

for the HOD algorithm is 7 × 7 and for the XCD algorithm is 9 × 9. In general,

a block size of approximately 6 × 6 provides good results. Figures 5.15 through

5.23 show output results using a 512 × 512 image created using frame averaging
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Figure 5.15: 512 × 512 image of a
tank derived from LIDAR data.

Figure 5.16: Image of Figure 5.15 cor-
rupted with noise of σ = 9000, input
PSNR = 18.96.

Figure 5.17: Image in Figure 5.16 de-
noised using HOD and a block size of
six. Output PSNR = 33.17.

Figure 5.18: Image of Figure 5.17 de-
noised using Wiener filtering. Output
PSNR = 26.23.
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of LIDAR data. This image was corrupted with Gaussian noise and then denoised

using HOD and Wiener filtering. Results for a 256× 256 subregion of the image are

shown in Figures 5.2.3 through 5.2.3. Beginning with the corrupted image shown

in Figure 5.20, results for the Wiener filter shown in Figure 5.2.3 and for the HOD

algorithm in Figure 5.2.3. The the results of the HOD algorithm are not only better in

PSNR but are visually more appealing than median or Wiener filtering. Figures 5.15

through 5.23 show the results of filtering the entire 512×512 tank image with AWGN

of σ = 9000 and input PSNR = 18.96. In this image, the advantage of HOD over

Wiener filtering are even more apparent. For benchmarking purposes, the algorithms

were also applied against the standard images Lena, Barbara, Boats, House, Peppers

and compared with other denoising algorithms in the literature. The results of the

HOD and XCD algorithms using a constant block size of 6× 6 are shown in Tables

5.1 and 5.2.

The exemplar-based denoising algorithm described Kervrann and Boulanger

[31, 32] is of interest because it is a non-transform domain algorithm that also uses

L2 distance for block selection. Comparative results for the Peppers image are shown

in Figure 5.24. Exemplar-based denoising performed better than both the HOD and

XCD algorithms at relatively low noise levels (σ < 70) but did not perform as well

at the higher noise levels that are common in passive infrared and LIDAR imaging.

The algorithms also compared favorably to the SUREshrink and Bayeshrink

wavelet coefficient shrinkage algorithms that are described in [19] and [14] and are

evaluated by Chang in [14] within a range of PSNRs from approximately of 17 to

28. The SUREshrink and Bayeshrink algorithms determine and apply thresholds to

coefficients in the wavelet domain.

Overall, the XCD and HOD algorithms compared favorably with most de-

noising algorithms but fell short of the reported results for the most recent wavelet

coefficient shrinkage algorithms that examine and combine neighborhood statistics

including [15], [17], [42], and [44]. However, the algorithms proposed do provide a
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Lena Barbara Boats House Peppers
σ/Input PSNR 512x512 512x512 512x512 256x256 256x256

10/28.14 34.39 33.10 32.25 35.05 33.71
20/22.10 30.63 27.86 28.57 30.88 29.23
30/18.57 28.67 24.99 26.39 28.63 26.50
50/14.16 26.77 22.93 24.53 25.72 23.75
75/10.64 25.25 22.19 23.34 24.47 22.13
100/8.14 24.07 21.55 22.53 23.45 21.28
125/6.20 22.93 20.93 21.71 22.43 20.54
150/4.59 21.99 20.29 20.96 21.60 20.05

Table 5.1: Output PSNRs of the HOD method using a block size of six applied
across several standard images with additive noise of varying standard deviation.

Lena Barbara Boats House Peppers
σ/Input PSNR 512x512 512x512 512x512 256x256 256x256

10/28.14 34.45 32.98 32.46 35.05 33.72
20/22.10 30.77 27.70 28.72 30.98 29.42
30/18.57 28.91 24.94 26.75 28.87 26.54
50/14.16 26.93 23.01 24.80 26.13 24.26
75/10.64 25.30 22.20 23.46 24.61 22.50
100/8.14 24.06 21.54 22.56 23.44 21.36
125/6.20 22.89 20.90 21.70 22.37 20.56
150/4.59 21.94 20.26 20.94 21.55 20.05

Table 5.2: Output PSNRs of the XCD method using a block size of six applied
across several standard images with additive noise of varying standard deviation.

mechanism for implementing neighborhood-based denoising in a manner that yields

impressive results and could be relatively straightforward to implement in combina-

tional logic.

5.3 Chapter Summary

This chapter of the dissertation has provided a review of recent image pro-

cessing literature on single-frame image denoising and developed and demonstrated

three similar block-based denoising algorithms. These algorithms exploited different

measures of similarity between blocks than those used by other denoising algorithms

in the literature. The algorithms described in this chapter are also different from
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Lena Barbara Boats House Peppers
Method 512x512 512x512 512x512 256x256 256x256

HOD 24.07 21.55 22.53 23.45 21.28
XCD 24.06 21.54 22.56 23.44 21.36

Exemplar [31] 23.32 20.64 21.78 23.08 20.51
Median Filter 15.77 15.33 15.68 15.63 15.68
Wiener Filter 15.46 15.24 15.43 15.41 15.39

Table 5.3: Results of various methods with input PSNR = 8.14 using a block size
of six applied across several standard images with additive noise of varying standard
deviation.

those described in the literature because they suspend the requirement for informa-

tion included in the average to be located in close spatial proximity to the pixel

being denoised. In all of the algorithms reviewed in Section 2.5, and in the more ba-

sic low-pass and median filters described in the introduction, close spatial proximity

to a given pixel was an primary consideration in selecting other pixels to include in

an average. The algorithms have been shown to achieve better results than many

neighborhood filters by suspending this requirement. Computational load was also

reduced in a number of areas by using binary weighting schemes.

Overall, the algorithms worked best and had the lowest processing times when

dealing with images with significant amounts of noise (e.g. Input PSNR < 14). With

less noise in an image, it becomes increasingly difficult to find blocks that are close

in L2 distance with statistics that meet algorithm criteria. This observation may

indicate a fundamental limit on denoising methods that rely on image statistics.

One of the more interesting aspects of both the methods introduced here and

the techniques reviewed in Section 2.5 is the that the smoothing algorithms all gener-

ally produce results that exceed the CRLB. It is a relatively simple exercise to show

that the maximum-likelihood estimate of an image I which corrupted with AWGN

with variance σ2 is D. It is also fairly simple to show that the variance on an esti-

mate of a pixel in the image is also σ2. Block-based or other smoothing algorithms

provide estimates that are, for most images, much better than a straightforward
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CRLB calculation would predict by introducing additional assumptions about the

frequency content of natural images. In particular, the underlying assumption is

that most natural images contain predominantly low-frequency spatial content and

that by averaging using linear or nonlinear filters a reasonable estimate of the images

under study may be provided.

In addition to the methods noted in Section 2.5, many state-of-the-art wavelet

coefficient shrinkage denoising methods, including those discussed in [17], [44], [42]

among others, rely on combining of neighborhood information in the wavelet trans-

form domain. Regardless of the domain used, in the presence of noise, the ability

to combine information from these neighborhoods is subject to some degradation.

Follow-on work may include investigation into the fundamental performance limits

encountered by these algorithms.
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Figure 5.19: Original 256 × 256 LI-
DAR image of a tank resulting from a
multiframe average.

Figure 5.20: Tank image with Ad-
ditive White Gaussian Noise, σnoise =
5000, input PSNR = 19.33.

Figure 5.21: Tank image with Ad-
ditive White Gaussian Noise, (input
PSNR = 19.33) after Wiener filtering.
Output PSNR = 26.43.

Figure 5.22: Tank image with Ad-
ditive White Gaussian Noise, (input
PSNR = 19.33) after HOD filtering with
block size of 5, output PSNR = 31.00.
Note that in addition to reducing sta-
tionary AWGN, non-stationary readout
noise has also been reduced.
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Figure 5.23: The “method noise” derived by subtracting the denoised image found
in Figure 5.17 from the original noisy image found in Figure 5.16. Note the absence
of feature content in this image. The actual value of σ was 8976. The measured
value of σ in this method noise is 8801.
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Figure 5.24: Results of the HOD and XCD methods compared against the
Exemplar-based image denoising algorithm described in [31] using results reported
in [31].
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Figure 5.25: Results of the HOD and XCD methods compared against the
Bayeshrink and SUREshrink algorithms described in [14] and [19] using results re-
ported in [14].
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VI. Conclusions

This dissertation has introduced research into image registration and single-

frame denoising which has yielded novel image-processing algorithms and im-

proved general theoretical understanding of bounds on the performance of shift esti-

mators. The dissertation introduced methods to improve image quality and explored

the theoretical limits of an algorithm’s ability to achieve these improvements. In this

final chapter, the results from the previous chapters are summarized and additional

research is proposed that can extend the efforts described in the earlier chapters of

this dissertation.

This chapter is organized as follows: In Section 6.1 a summary of the significant

contributions of Chapters III, IV and V is provided. Then, in Section 6.2, areas that

are believed to yield fruitful research that will extend the work performed in this

dissertation are discussed.

6.1 Summary of Results and Contributions

This section provides an overview of contributions from the dissertation.

6.1.1 Review of Results in Chapter III. Chapter III provided a method

for improving the performance of projection-based image registration algorithms at

minimal computational cost. It explained how a low-pass filtering can be designed

to exploit spatial correlations in an image and improve the performance of image

registration algorithms. It also described experiments conducted with actual test

data that have confirmed our analytical results.

The major contributions of this chapter included a generalization and modifi-

cation of the FOM of Cain et al. [11] so that it could be applied to image projections

containing correlated noise. This was necessary to appy the FOM to filtered projec-
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tions the filtered case. This new FOM was then used in a procedure for finding the

length of a boxcar filter which was applied to the projections of an image.

A second contribution of this chapter was the use of the FOM in a procedure

that optimized a boxcar filter to minimize the mean-squared error of shift estimates

created from projections of an image. The chapter showed that when uncorrelated

noise is added to an image, the covariance structure of a projected image remains

largely intact. A procedure for estimating the covariance function from available

noise-corrupted data was introduced. The covariance function was then used in

conjunction with the revised FOM to find the optimal length of boxcar filter that

minimized the mean-squared error of shift estimates even in low-SNR environments.

The filters were compared with other low-pass filters and shown to be both

computationally efficient and effective. Results showed an improvement by factors

up to 5.5 in mean-squared error and a reduction by at least O(N) in computational

complexity from 2-D methods. Further computational advantages were also dis-

cussed for this filtering method compared with other filtering methods described in

the literature for reducing the mean-squared error of shift estimates.

6.1.2 Review of Results in Chapter IV. Chapter IV presented a calculation

and comparison of theoretical performance bounds for image registration algorithms.

It showed that for large images under conditions of full-frame registration, the CRLB

is an adequate measure of performance for most realistic imaging conditions. For

projected, optically filtered, or small images, however, the CRLB may not sufficiently

predict bounds on the performance of a registration algorithm and the Barankin

bound was introduced as a method for providing a more accurate estimate.

Chapter IV first examined the one-dimensional case of filtered projections and

derived analytical expressions for the CRLB and Barankin bound of a shift estimate

for two filtered and projected images of the same scene. This was compared with the

CRLB and Barankin bound of shift estimates generated from 2-D data. The results
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for the 1-D case were shown to be have much higher lower bounds on mean-squared

error and, that for low-SNR projected images, there was a significant difference

between the mean-squared error predicted by the CRLB and that predicted by the

Barankin bound.

The chapter then examined and compared the effect of focal-length errors on

the lower bounds of the mean-squared error of shift estimators. For the test images,

the CRLB and Barankin bounds increased as the severity of focal-length errors in-

creased in the simulations. In defocused imagery, the Barankin bound provided a

higher estimate of SNR than that predicted by the CRLB even at moderate noise

levels.

It is also worth noting that Cain et al. [11] show that shift estimates for low

intensity images in the presence of fixed pattern noise may actually be better using

projections than full 2-D estimates. Bounds on this behavior would also make an

interesting future study.

Perhaps the most interesting aspect of the research documented in this paper

was that the bounds under study were most applicable to distortions of small images.

In many target-recognition applications, objects being imaged may be rotated and

scaled and salient features may be extracting using various filtering techniques. This

observation suggests many follow-on applications which are discussed next in Section

6.2.

6.1.3 Review of Results in Chapter V. In Chapter V, three similar block-

based denoising algorithms were developed and demonstrated. These algorithms

identified similar regions within a single image that could be used to create block

averages in a way that was similar to the multiframe averaging facilitated by image

registration in previous chapters. The new algorithms exploit different measures

of similarity between blocks than those used by other denoising algorithms in the

literature and use efficient binary weighting schemes in their block averages. These
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algorithms are also different from those described in the literature because they

suspend the requirement for information included in the average to be located in close

spatial proximity to the pixel being denoised. The chapter showed that in low-SNR

situations these algorithms could achieve better results than many neighborhood

filters by suspending this requirement. Computational load was also reduced in a

number of areas by using binary weighting schemes.

The three algorithms introduced in Chapter V were the Gaussian-Detection

Denoising (GDD) algorithm, the Higher-Order Denoising (HOD) algorithm and the

Cross-Correlation Denoising (XCD) algorithm. The GDD algorithm attempted to

identify similar blocks by evaluating whether or not their error functions belonged

to a Gaussian distribution. This algorithm did remove some noise in the image

but was less successful than other methods, including the Wiener filter. This was

not the case with the HOD algorithm. This algorithm looks at the second moment

of the block and pairs of blocks whose error function has a third-order moment

indicative of a Gaussian distribution. This algorithm consistently outperformed

low-pass filtering techniques including the Wiener filter and was shown to be on-

par with, and in some cases better than, other noise reduction algorithms found in

current literature. The XCD algorithm was the third denoising algorithm developed

and demonstrated in this chapter. This algorithm, attempted and succeeded in

achieving the performance of the HOD algorithm, while using block projections to

reduce the processing requirements of the computations. Most of the steps of the

XCD algorithm were identical to those in the HOD algorithm; however, instead of

calculating the skewness of the error vector between two blocks, the projections of

the blocks were used to calculate their cross correlations and observe the location of

the cross-correlation peak.

Overall, the algorithms worked best and had the lowest processing times when

dealing with images with significant amounts of noise (e.g. input PSNR < 14 dB).

With less noise in an image, it becomes increasingly difficult to find blocks that are
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close in L2 distance with statistics that meet our criteria. This observation may

indicate a fundamental limit on denoising methods that rely on image statistics.

Potential follow-on work to the work described in this chapter is discussed in depth

in Section 6.2 but may include investigation into the fundamental performance limits

encountered by these algorithms.

6.2 Recommended Future Research

This section outlines additional research efforts that could be taken to extend

the work described in this dissertation. Further research is described that could be

performed in the areas of image registration, bounds on registration performance

and block-based denoising.

6.2.1 Image Registration. Chapter III discusses how image smoothing and

bias reduction are used jointly to improve the performance of image registration

algorithms [3,22,50]. In Chapter III it was shown that the smoothing portion of the

filtering could be accomplished using a low-pass filter to eliminate noise. The chapter

also proposed that bias reduction in the algorithm could be performed optically and

simulated this optical filtering in experiments. The chapter did not attempt to

quantify the exact parameters for the defocus that would be required to perform

this optical filtering. This presents another opportunity for future research.

Based on the research in this chapter, it is possible to design a two-lens system

(and possibly systems using more than two lenses) for motion estimation that could

effectively create two images that, when differenced, would produce a bias-free image

that could be reliably registered with a fast correlation-based algorithm. If sensor

noise is a concern, the differencing of the image and its optically low-pass filtered

content would effectively double the amount of noise that would need to be mitigated.

This optical differencing, as was noted in Chapter III also produces images that have
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most of their power concentrated in the edges of the objects in the scene. This is

also an area that may be fruitful for future exploration.

Another area that could be studied in the future is the analysis and mitigation

of bias in different image registration algorithms. Robinson and Milanfar discuss

estimator bias for gradient-based image registration in [46]. There are, however,

a number of different ways to register images including methods based on cross-

correlations as described in Chapter III, methods based on mutual information [43],

and methods based on landmarks within images [27]. A comparison of these regis-

tration methods and their inherent estimator biases would be an excellent starting

point for another dissertation on image registration.

6.2.2 Bounds on Registration Performance. A final area for future research

is the possibility of employing the Barankin bound in the area of automatic target

recognition (ATR). One of the interesting facets of the Barankin bound that is used

in Chapter IV is that it may be used to measure the bound on estimating a shift

given other shift scenarios that are slightly different and represent the most probable

sources of shift error. In this dissertation, this was used to explore registration

estimates of projected images; however, it may also be possible to extend this work

to automatic target recognition. For example, Driggers et al. [20] test the ability

of a group of human test subjects to differentiate between several similar armored

vehicles under different noise conditions and sampling rates. Using the Barankin

bound, it may be possible to calculate information-theoretic bounds on the ability to

differentiate between several similar-looking targets that represent the most probable

errors to a target recognition problem. This should be a relatively uncomplicated

extension to this work but one that may provide a new way of looking at the ATR

problem.

This work on the theoretical bound on image registration performance can also

be expanded to include more dynamic cases such as the registration of images under
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conditions of rotation and dilation. For a given scene, using the linear operator

notation that used in this dissertation, a dilation or a rotation can be modelled

as yet another filtering and sampling operation. These bounds have been explored

to some extent in [55], however, it may be useful to examine the Barankin bound

of images under these same conditions. In fact, because most imaging sensors are

square arrays of detectors, any rotation of an imaging sensor necessarily changes the

amount of mutual information in two images of the same scene. For some scenarios,

this effect may be negligible; however, for remote sensing applications, this change

in information may make a substantial difference. Bounds on this type of estimation

are another area that provide an opportunity for additional research with military

applications.

6.2.3 Block-Based Denoising. As mentioned in Chapter V, the smoothing

algorithms from the literature and those introduced in this dissertation all generally

produce results that exceed the CRLB. Block-based or other smoothing algorithms

provide estimates that are, for most images, much better than a straight forward

CRLB calculation would predict by introducing additional assumptions about the

frequency content of natural images. In particular, the underlying assumption is that

most natural images contain predominantly low-frequency spatial content and that

by averaging using linear or non-linear filters, a reasonable estimate of the images

under study can be provided.

One interesting potential extension to this research is a calculation of the the-

oretical bounds on the performance of image smoothing algorithms. One way to

approach this problem would be to introduce additional assumptions about image

content by modeling the diffraction-limited image as something like a Gibbs distribu-

tion [48]. Alternatively, it may be possible to model the image by modeling its local

variation using techniques such as those described in [1, 5, 6, 8, 13] and to calculate

a bound from this localized structure. Since all of these methods assume that there

are local image variations and attempt to account for them, it may be possible to
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create either an algorithm-specific or generalized bound for denoising a particular

image.
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Appendix A. Important Derivations

This appendix provides the derivations of important results used in this disser-

tation.

A.1 Calculation of the FOM Used in Chapter III

Cain et al. in [11] introduced a figure of merit (FOM) which was modified in

(3.10) to account for the effects of filtering in the projections. This appendix shows

how (3.10) can be used to derive (3.12). For a given image, the numerator and the

denominator of (3.10) are examined separately.

The derivation below generalizes some of the random variables using the nota-

tion Nn(0, K) to indicate a Gaussian random variable with zero mean and variance

K. Since some of these random variables will be combined in the course of the

derivation, the numeric subscript n ∈ {1, 2} is used to indicate the frame of data

associated with it. This allows tracking independence of random variables as they

are combined to achieve the desired results.

Turning first to the numerator, if the projections of two images are examined

over a number of trials, the ensemble average of the cross correlation of these two

filtered projections can be written as

pz = (hw ∗ iy − wīy) ∗Wf (hw ∗ iy − wīy). (A.1)

Points on the projection corresponding to the precise alignment of the two filtered

projections and a shift of 1 can be expressed as

〈pz(0)〉 = (hw ∗ iy − wīy)
TWf (hw ∗ iy − wīy),

〈pz(1)〉 = (hw ∗ iy − wīy)
TWf (hw ∗Tαiy − wTαiy)

∣∣
α=1

, (A.2)
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where circular shifting is assumed. If {L =
∑N

n=1 Wf (n, n)}, the difference between

these two points can be written as

〈pz(0)〉 − 〈pz(1)〉 = (hw ∗ iy − wīy)
TWf (hw ∗ (iy −Tαiy)− wīy − wTαiy)

∣∣
α=1

,

≈ L

N
(hw ∗ iy − wīy)

T (hw ∗ (iy −Tαiy)− wīy − wTαiy)

∣∣∣∣
α=1

.

(A.3)

Noting that filtering correlates adjacent terms in the filtered projections and again

assuming circular shifting, this can be further reduced to

〈pz(0)〉 − 〈pz(1)〉 ≈ L

N

(‖iy‖2 − 〈iy ,Tαiy〉
− 〈

hw ∗ iy , wīy
〉

+
〈
hw ∗ iy , wTαiy

〉

+
〈
wīy , wīy

〉− 〈
wīy , wTαiy

〉)∣∣
α=w

,

≈ L

N

(‖iy‖2 − 〈iy ,Tαiy〉 −
〈
wīy , wīy

〉

+
〈
wīy , wTαiy

〉
+

〈
wīy , wīy

〉

− 〈
wīy , wTαiy

〉)∣∣
α=w

,

≈ L
(
VAR[i]− COV(iTTαi)

)∣∣
α=w

,

≈ LN2
(
VAR[I]− COV(I|w)

)
. (A.4)

In the denominator of (3.10), the effect of noise on the FOM is accounted for. To

do this, the effect of the addition of AWGN of variance σ2 on the expected value

of the variance of the difference between two points on the cross correlation of the

two projections is examined. The data in the projection is represented as dn,z =

iy + qn where qn is a vector of Gaussian random variables Nn(0, σ2N). Using this

106



formulation, and again assuming circular shifting,

E[VAR[pz(0)− pz(1)]] = E[VAR[(hw ∗ (iy + q1)− wd1,z)
T

Wf ((iy −Tαiy) + (q2 + Tαq2))]]|α=w ,

= VAR

[
N−1∑
n=0

Wf (n, n)
(
N1(0, wσ2N)〈iy − (Tαiy)〉

+N1(0, wσ2N)N2(0, 2σ
2N)

+
〈
(hw ∗ iy)− w ¯d1,z

〉
N2(0, 2σ

2N)
)]∣∣

α=w
,

≈ VAR
[
N1(0, wσ2LN

〈
(i− (Tαi))

2
〉
) + N(0, 2wσ4LN2)

]
,

≈ wσ2LN2(2(VAR(I)− COV(I|w)) + σ2) (A.5)

Combining (A.4) and (A.5) and normalizing by the size of the filter, w, yields the

desired result

FPy(0,−1) =
(LN2

(
VAR[I]− COV(I|w)

)
)2

w2σ2LN2(2(VAR(I)− COV(I|w)) + σ2)
(A.6)

A.2 Derivation of Theoretical Performance Bounds

A.2.1 Derivation of the CRLB for a Projected & Filtered Image. For a

given image, the terms (4.9), (4.10) and (4.11) are derived as follows:

1. Taking the natural logarithm of (4.7) yields

ln p(f1,y, f2,y|iy, α) = −N ln[2πσ2N ]− (f1,y − iy)
TW−1(f1,y − iy)

2σ2N

−(f2,y −HpTαiy)
TW−1(f2,y −HpTαiy)

2σ2N
. (A.7)

Taking the partial derivative with respect to α produces

∂ ln p(f1,y, f2,y|iy, α)

∂α
= − 1

σ2N
(f2,y −HpTαiy)

TW−1∂HpTαiy
∂α

. (A.8)
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Then,

∂2 ln p(f1,y, f2,y|iy, α)

∂α2
= − 1

σ2N

(
(f2,y −HTαiy)

TW−1∂2HpTαiy
∂α2

−
(

∂HpTαiy
∂α

)T

W−1

(
∂HpTαiy

∂α

))
. (A.9)

Using the differentiation property of the Fourier Transform, it can be shown

that ∂
∂α

i(x − α) = − ∂
∂x

i(x − α) and ∂2

∂α2 i(x − α) = ∂2

∂x2 i(x − α). Using this

relationship, the differentiation can be changed to

∂2 ln p(f1,y, f2,y|iy, α)

∂α2
= − 1

σ2N

(
(f2,y −HpTαiy)

TW−1∂2HpTαiy
∂x2

−
(

∂HpTαiy
∂x

)T

W−1

(
∂HpTαiy

∂x

))
. (A.10)

Taking the negative of the expectation, it is found that

−E

[
∂2 ln p(f1,y, f2,y|iy, α)

∂α2

]
=

1

σ2N

(
∂HpTαiy

∂x

)T

W−1

(
∂HpTαiy

∂x

)
.

Recalling that W−1 = (Hp
THp)

−1
= (Hp)−1(Hp

T )
−1

and employing the com-

mutative operator Dx leads to

−E

[
∂2 ln p(f1,y, f2,y|iy, α)

∂α2

]
=

1

σ2N
‖Hp

−1HpTαDxiy‖2,

=
1

σ2N
‖Dxiy‖2. (A.11)
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2. Equation (A.8) is then employed to find the elements of the vector Jαx as:

Jαx = −E

[
∂

∂iy

( −1

σ2N
(f2,y −HpTαiy)

TW−1∂HpTαiy
∂α

)]

= E

[
1

σ2N

(
(f2,y −HpTαiy)

TW−1∂2HpTαiy
∂α∂iy

−
(

∂HpTαiy
∂iy

)T

W−1∂HpTαiy
∂α

)]
,

=
1

σ2N
(HpTα)TW−1

(
−∂HpTαiy

∂α

)
,

= − 1

σ2N
Tα

THp
T (Hp

T )
−1

Hp
−1HpTαDxiy,

= − 1

σ2N
Dxiy. (A.12)

3. Finally, differentiation with respect to the nuisance parameters themselves pro-

duces Jxx

Jxx = −E
[ ∂2

∂i2y

(
−N ln[2πσ2N]− (f1,y −Hpiy)

TW−1(f1,y −Hpiy)

2σ2N

−(f2,y −HpTαiy)
TW−1(f2,y −HpTαiy)

2σ2N

) ]
,

= −E

[
∂

∂iy

(
2Hp

TW−1(f1,y −Hpiy)

2σ2N
+

2(HpTα)TW−1(f2,y −HpTαiy)

2σ2N

)]
,

=
1

σ2N

(
Hp

TW−1Hp + Tα
THp

TW−1HpTα

)
,

=

(
2I

σ2N

)
. (A.13)

where I is the identity matrix.

Using (A.11), (A.12), and (A.13) it is now a simple matter to block invert (4.8) using

the Schur information complements Sx and Sα as

J−1 =


 Sα

−1 Jαα
−1JαxSx

−1

Sx
−1Jαx

TJαα
−1 Sx

−1


 (A.14)
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where

Sα = Jαα − JαxJxx
−1Jαx

T , (A.15)

Sx = Jxx − Jαx
TJαα

−1Jαx. (A.16)

Since the purpose of the derivation is to find the CRLB of the shift estimate, the

other elements of the FIM can be ignored to solve

Sα
−1 =

σ2N

‖Dxiy‖2 − 1
2
〈Dxiy,Dxiy〉

, (A.17)

= 2σ2N
[‖Dxiy‖2

]−1
. (A.18)

A.2.2 Derivation of the Two-Dimensional CRLBs. For the 2-D case, the

natural logarithm of the joint probability of two image frames represented as vectors

(1.8) and (1.9) can be written as

ln p(D1,D2|I) = − 1

2σ2
(D1 −HpHoI)

TW−1(D1 −HpHoI)

− 1

2σ2
(D2 −HpHoTα,βI)

TW−1(D2 −HpHoTα,βI)

+constant. (A.19)

Taking the partial derivative of the log likelihood equation (A.19) with respect

to α produces

∂ ln p(D1,D2|I, α, β)

∂α
=

1

σ2
(D2 −HpHoTα,βI)

TW−1∂HpHoTα,βI

∂α
. (A.20)

Then, the differentiation property of the Fourier Transform is again employed, (i.e.

∂
∂α

i(x−α) = − ∂
∂x

i(x−α) and ∂2

∂α2 i(x−α) = ∂2

∂x2 i(x−α)) to change the differentiation
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to

∂2 ln p(D1,D2|I, α, β)

∂α2
=

1

σ2

(
DT

2 W−1∂2HpHoTα,βI

∂α2

−
(

∂HpHoTα,βI

∂x

)T

W−1

(
∂HpHoTα,βI

∂x

)

− (HpHoTα,βI)
TW−1∂2HpHoTα,βI

∂α2

)
. (A.21)

Taking the negative expectation leads to

−E

[
∂2 ln p(D1,D2|I, α, β)

∂α2

]
=

1

σ2
‖DxHoI‖2. (A.22)

Similarly,

−E

[
∂2 ln p(D1,D2|I, α, β)

∂β2

]
=

1

σ2
‖DyHoI‖2. (A.23)

Then, beginning with (A.20)

∂2 ln p(D1,D2|I, α, β)

∂α∂β
=

1

σ2

[
DT

2 W−1∂2HpHoTα,βI

∂α∂β

−
(

∂HpHoTα,βI

∂β

)T

W−1∂HpHoTα,βI

∂α

−(HpHoTα,βI)
TW−1∂2HpHoTα,βI

∂α∂β

]
. (A.24)

Taking the negative expectation and changing the variables of differentiation yields

−E

[
∂2 ln p(D1,D2|I, x, y)

∂α∂β

]
= 〈DxHoI,DyHoI〉 . (A.25)

Differentiating with respect to the nuisance parameters, again return to (A.20) and

find,

∂2 ln p(D1,D2|I, α, β)

∂α∂I
=

1

σ2

[
(HpHoTα,β)TW−1∂HpHoTα,βI

∂α

]
. (A.26)
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Completing the differentiation, changing the variable of differentiation, and taking

the negative expectation produces the results

E

[
∂2 ln p(D1,D2|I, α, β)

∂α∂I

]
= − 1

σ2
(HpHoTα,β)TW−1∂HpHoTα,βI

∂x
,

= − 1

σ2
Ho

T DxHoI (A.27)

and similarly

E

[
∂2 ln p(D1,D2|I, α, β)

∂β∂I

]
= − 1

σ2
Ho

T DyHoI. (A.28)

Finally, derive

−E

[
∂2

∂I2
ln p(D1,D2|I)

]
= E

[ 1

σ2

∂

∂I

[
(D1 −HpHoI)

TW−1(HpHo)

+(D2 −HpHoTα,βI)
TW−1(HpHoTα,β)

] ]
,

=
1

σ2
diag

(
(HpHo)

TW−1HpHo

+(HpHoTα,β)TW−1(HpHoTα,β)
)
,

=
2

σ2
diag

(
Ho

THo

)
(A.29)

If a shift vector is defined γ = [α, β], a block FIM J can be created of the form:

J =


 Jγγ Jγo

T

Jγo Joo


 (A.30)
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where, for the filtered images, combining results from (A.22), (A.23), and (A.25)

gives

Jγγ =
1

σ2


 ‖DxHoI‖2 〈DxHoI,DyHoI〉
〈DxHoI,DyHoI〉 ‖DyHoI‖2


 (A.31)

Jγo = − 1

σ2

[
Ho

T DxHoI Ho
T DyHoI

]
(A.32)

Joo =
2

σ2
diag

(
Ho

THo

)
. (A.33)

Inverting the FIM yields

J−1 =


 Sγ

−1 Jγγ
−1JγoSo

−1

So
−1Jγo

TJγγ
−1 So

−1


 (A.34)

where

Sγ = Jγγ − JγoJoo
−1Jγo

T , (A.35)

So = Joo − Jγo
TJγγ

−1Jγo. (A.36)

Then

Sγ
−1 = 2σ2


 ‖DxHoI‖2 〈DxHoI,DyHoI〉
〈DxHoI, DyHoI〉 ‖DyHoI‖2



−1

(A.37)
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Appendix B. Mathematical Background and Related Theory

This appendix describes some of the basic mathematical concepts and notational

conventions used throughout this paper. It describes some of the statistical

underpinnings of image denoising problems and describe the notation that is used

commonly in the dissertation to address the related problems of block-based image

denoising and image registration.

Section B.1 provides a discussion of the chi-square distribution. The section

provides a discussion of some of the salient features of the chi-square distribution

and a discussion of how it occurs in image denoising problems. This dissertation also

uses the correlation structure of an image as an exploitable underlying property of a

noisy set of data. Section B.2 describes the notation and methods used for measuring

the correlation structure of the projections of an image and of an entire image.

The Cramer-Rao lower bound and Barankin bound are two established methods

for estimating bounds on the mean-squared error of a parameter such as alignment.

Therefore, Section 2.3 reviews the Cramer-Rao lower bound and the Barankin bound.

Finally, Section 2.4 describes the method used to model defocus errors in an optical

system.

B.1 The Chi-Square Distribution

This section describes the chi-square distribution and provides a working un-

derstanding of it that is of fundamental importance in describing and understanding

the denoising algorithms in this dissertation. Although a thorough description of the

characteristics of the noncentral chi-square distribution is contained in [29] among

other places, it is worthwhile to discuss the significance of this distribution within

the context of the image denoising problem. As noted in [18], [28], and [29], the

noncentral chi-square distribution is the PDF of the sum of normally-distributed,

unit-variance, squared random variables xi with means µi. If x is a random variable
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with a chi-square distribution, then

x =
ν∑

i=1

x2
i . (B.1)

In this equation the parameter ν is referred to as the “degrees of freedom” of the

variable. The sum of the squares of the means forms the “noncentrality parameter”

of the chi-square distribution. This parameter is denoted as λ where

λ =
ν∑

i=1

µ2
i . (B.2)

The PDF of the distribution may be written

p(x) =
x

ν
2
−1e−

1
2
(x+λ)

2ν/2

∞∑

k=0

(λx
4

)k

k! Γ(−ν
2

+ k)
, x ≥ 0, (B.3)

where the Gamma function, Γ(u) is defined as

Γ(u) =

∫ ∞

0

tu−1e−tdt. (B.4)

The noncentral chi-square distribution has the attributes

E[x] = ν + λ, (B.5)

VAR[x ] = 2ν + 4λ. (B.6)

This distribution is denoted using the symbol χ
′2
ν (λ).

Using (B.3), it will be useful to examine the behavior of the distribution using

varying values of ν and λ. These distributions are shown in Figures B.1, B.2, B.3,

B.4, and B.5. In the next section, a discussion of the reason for the occurrence of

this distribution will be presented. It will become evident that λ is a function of the

noise present in the image and will be fixed in the applications presented.
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Figure B.1: Graph of the PDF of χ
′2
ν (λ) with λ = 0. This dis-

tribution is identical to that of a central chi-square distribution.
Varying values of ν are plotted.
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Figure B.2: Graph of the PDF of χ
′2
ν (λ) with λ = 1. Varying

values of ν are plotted.
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Figure B.3: Graph of the PDF of χ
′2
ν (λ) with λ = 3. Varying

values of ν are plotted.

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
 ν = 1

 ν = 2
 ν = 3

 ν = 4
 ν = 5

 ν = 6

x

p(
x)

Figure B.4: Graph of the PDF of χ
′2
ν (λ) with λ = 6. Varying

values of ν are plotted.
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Figure B.5: Graph of the PDF of χ
′2
ν (λ) with λ = 10. Varying

values of ν are plotted.

B.1.1 Occurrence of the Chi-Square Distribution in Image Processing Prob-

lems. The research described in this dissertation includes development of meth-

ods for denoising images that rely on mean-squared error calculations between image

subregions. When one looks at the mean-squared error between identical diffraction-

limited subimages that have additive Gaussian noise, the PDF of the resulting mean-

squared error distribution will be a noncentral chi-square distribution. The reason

that this distribution occurs can be explained using the following logic.

Say I is defined as a diffraction-limited, n× n block of an image where n is a

positive integer. For notational simplicity, ignore the location of this block within the

image and use the variables u and v to index the individual pixels of this subimage.

If I is corrupted by zero-mean Gaussian noise so that for each pixel, I(u, v) where

u ∈ {1, ..., n} and v ∈ {1, ..., n}, then

Di,j(u, v) = I(u, v) + Qi,j(u, v),

118



where Di,j(u, v) is a subimage centered at (i, j) and Qi,j is the realization of the

Gaussian noise within that subimage. In matrix notation this can be described

Di,j = I + Qi,j,

where Qi,j is an n × n matrix of Gaussian random variables and represents the

realization of noise in this block. Within an image, there may be other n× n blocks

centered at coordinates (s, t) that satisfy the equation

Ds,t = I + Qs,t.

If these subimages exist, then ∆s,t, the error between Di,j and Ds,t can be calculated

∆s,t = Di,j −Ds,t = (I + Qi,j)− (I + Qs,t),

= Qi,j −Qu,v. (B.7)

For a single pixel in ∆s,t,

∆s,t(u, v) = Qi,j(u, v)−Qs,t(u, v).

At this point, note that Qi,j(u, v) stays constant while Qs,t(u, v) varies over all the

blocks that satisfy the original conditions. Thus it is possible to treat Qi,j(u, v) as

a deterministic value and Qs,t(u, v) as a Gaussian random variable with standard

deviation σ. The PDF of ∆s,t(u, v) can then be written as

p(∆s,t(u, v)|Qi,j(u, v)) =
1√
2πσ

exp

(
(∆(u, v)−Qi,j(u, v))2

σ2

)
. (B.8)
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For notational simplicity define the Frobenius norm as Watkins does in [54] using

the notation ‖A‖F to be

‖A‖F =

√√√√
n∑

i=1

n∑
j=1

|A(i, j)|2, (B.9)

where A(i, j) are the elements of the n × n matrix A. Using the Frobenius norm,

the mean-squared error can then be calculated as the quantity

MSE =
‖∆s,t‖2

F

n2
, (B.10)

where the numerator is a sum over all u and v indexing ∆s,t and the denominator is a

constant that depends on the size of the subimage. Furthermore, the numerator is a

sum of the squares of Gaussian random variables of varying means. The sum of these

Gaussian random variables is, by definition, a noncentral chi-square distribution [28].

The arrival at this distribution can also be shown experimentally as shown in the

following subsection.

B.1.2 Statistical Characteristics of an Experimentally Determined Distribu-

tion. Say there is a single 3× 3 portion of a diffraction-limited image that can be

represented as shown in (B.11). This subimage is denoted as I.

I =




100 120 131

45 190 43

100 140 100


 (B.11)

If zero-mean, normally-distributed noise with σ = 25 is added to I, a noise realization

for the block may be obtained that is similar to Qi,j shown in (B.12).
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Qi,j =




−10.8141 7.1919 29.7291

−41.6396 −28.6618 −0.9408

3.1333 29.7729 8.1823


 (B.12)

Using the notation 〈 〉 to indicate a sample mean, this realization of the noise

has a mean of 〈Qi,j〉 = 1
9

∑n
u=1

∑n
v=1 Qi,j(u, v) = −0.45 and a variance of σ2 =

507.78.

At this point it is helpful to note that although the distribution of the noise

has zero mean and σ2 = 625, the mean of the realization of the noise in the 3 × 3

matrix is not zero and the variance is less than the variance that would be observed

over a larger array of numbers. This difference will become significant later on. For

now, it is interesting to examine statistics of the mean values of the noise.

B.1.3 Statistics of the Sample Mean of n×n Noise Samples. For an n×n

sized subimage, the mean of the noise within the subimage is defined

〈Qi,j〉 =

∑n
u=1

∑n
v=1 Qi,j(u, v)

n2
. (B.13)

In this equation,
∑n

u=1

∑n
v=1 Qi,j(u, v) represents the sum of i.i.d. zero-mean Gaus-

sian random variables. To calculate the PDF of this mean, recall that the PDF of

the AWGN can be represented as

p(x) =
1√
2πσ

exp

(−x2

2σ2

)
. (B.14)

As noted in [35] the sum of random variables with PDFs described by (B.14) can be

found as

p(u) =
n2

√
2πnσ

(−(nu)2

2σ2

)
. (B.15)
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Using (B.15), it can be shown analytically that varying the size of the n×n subimage

will change the variance of the mean of the noise. In Figure B.6 this is demonstrated

graphically using analytic data to graph the mean of the noise in blocks of varying

size where σ = 2. It is verified using randomly generated experimental data in

Figure B.7.
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Figure B.6: Analytically constructed plot of the PDF of the
mean of a set of noise samples. Note that the sample mean of a
set of zero-mean noise realizations is more likely to be zero with
a larger block size.

B.1.3.1 Corruption of a Subimage with Noise. Returning again use

to the image model Di,j = I+Qi,j a sample noisy block with AWGN can be created

as

Di,j =




89.1859 127.1919 160.7291

3.3604 161.3382 42.0592

103.1333 169.7729 108.1823


 . (B.16)
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Figure B.7: Experimentally constructed plot of the PDF of
the mean of a set of noise samples. Data was constructed using
100,000 ensembles of data with the indicated block size. Results
closely approximate those predicted analytically and shown in
Figure B.6
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The mean of this noisy block is 107.217 and its variance is 2831.0. For reasons

that will become evident later in this dissertation, it is desirable like to subtract the

mean from this block and then examine its mean-squared error in relation to other

blocks that have been created through a similar process. This process will yield a

chi-square random variable. If a mean-subtracted block is created Fi,j = Di,j−〈Di,j〉
the zero-mean result is

Fi,j =




−18.0311 19.9749 53.5121

−103.8566 54.1212 −65.1579

−4.0837 62.5559 0.9653


 . (B.17)

This block is now compared to other blocks that are statistically similar.

B.1.3.2 Generating Statistically Similar Subimages. Say that there

exist 10,000 blocks that are identical to block I and say that these blocks are also

corrupted by zero-mean Gaussian noise with standard deviation 25. Using the same

process that was employed to construct Fi,j, subtract the mean from these blocks

and call these blocks Gs,t where s ∈ {1, ..., 100} and t ∈ {1, ..., 100}. Calling ∆(u, v)

the per-pixel error between Fi,j and Gs,t where the pixels are indexed using u, v, the

errors observed are shown in Figure B.8.

Assuming there are enough samples available to equate the sample statistics

with a true, underlying statistical distribution, define the expected value of the error

between Fi,j and Gi,j as ∆̂s,t. Then,

∆̂s,t(u, v) =
∞∑

∆s,t(u,v)=−∞
∆s,t(u, v)p(∆s,t(u, v)) (B.18)

⇒ ∆̂s,t =




−10.3264 7.4875 30.1458

−40.8786 −27.8308 −0.841

3.48 30.5208 8.2521


 . (B.19)
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Figure B.8: Per pixel error between similarly constructed im-
ages.

These errors are approximately equal to Qi,j − 〈Qi,j〉. The expected value for 〈Qi,j〉
is zero, and since a priori knowledge of Qi,j is not available, it is necessary to assume

〈Qi,j〉 = 0 and ∆̂s,t(u, v) = Qi,j(u, v).

B.1.3.3 Estimation of Mean-Squared Error . Under the aforemen-

tioned assumptions, the PDF of the measured mean-squared error between I and Fi,j

can be predicted. Since the noncentral chi-square distribution is constructed from

normal-variance Gaussian random variables, in order to use the given equations, it

is necessary to normalize the distributions. Examining the per-pixel squared error

for σ2 6= 1 and ν = 9 the following calculation is made for the chi-square random

variable

x

σ2
=

9∑
i=1

x2
i

σ2
. (B.20)
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The scaled noncentrality parameter is found

λ

σ2
=

9∑
i=1

µ2
i

σ2
=

9∑
i=1

(E[x2])

σ2
=

9∑
i=1

1 = 9. (B.21)

The expected mean of the scaled data is calculated from the known values for the

noncentrality parameter λ and the number of degrees of freedom ν to be

E[x ]

σ2
= ν + λ = 9 + 9 = 18, (B.22)

which lead directly to the first moment of the PDF

E[x] = 11, 250. (B.23)

The variance can also be calculated from the noncentrality parameter λ and the

number of degrees of freedom ν as

VAR[
x

σ2
] = 2ν + 4λ = 2(9) + 4(9) = 54, (B.24)

which then leads to the variance

VAR[x] = 546252 = 21, 093, 750.

To examine the mean-squared error of variables with nine degrees of freedom (cor-

responding to the nine pixels in the subimage), divide the mean values by 9 and the

variance value by 92 = 81 to give the mean value over each block, thus yielding

E[x]predicted = 1, 250, (B.25)

VAR[x]predicted = 260, 416.
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Modifying the calculations to incorporate knowledge of the actual means then,

λ

σ2
=

3∑
u=1

3∑
v=1

(
Ês,t(u, v)

σ

)2

= 7.247. (B.26)

and

E[x]calculated = 1, 127, (B.27)

VAR[x]calculated = 227, 120.

Using randomly generated data as described above, the measured values are

〈x〉calculated = 1, 062, (B.28)

〈
x2

〉
calculated

− 〈x〉calculated = 218, 220.

Graphically, the measured PDF vs. the predicted and calculated PDFs are shown

below in Figure B.9. As shown graphically, the error distribution can be predicted

with reasonable accuracy using only the block size and the know mean and standard

deviation of the noise.

B.2 Calculating the Covariance Present in Images and Image Projections

Average covariances are used in some calculations in this dissertation. This

section describes these covariances are measured and the notation that is used to

denote these measurements. In Chapter III, the covariances of image pixels are

calculated based on their measured values in projections. Since the calculations

rely on information available in the projections, out of necessity, these measures

of pixel covariances ignore some relationships that are evident in 2-D that are not

evident in 1-D projections. Consequently, some of the sample covariances measured

are better described as average covariances. This averaging is acknowledged using

overbar notation and expressed as COVz, z ∈ {x, y} as they occur where z indicates
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Figure B.9: Comparison of measured vs. predicted data with

χ
′2
ν (λ) with λ = 15 distribution. Data labeled “measured PDF ”

is calculated according to the conditions of (B.29), data labelled
“PDF predicted with knowledge of block noise” is calculated
accoding to conditions of (B.28) and data labelled “PDF pre-
dicted without a priori knowledge” is calculated according to
conditions of B.28.

the axis of the projection. For a point indexed with x in a projection define this

average covariance as

COVy(I|α) =
1

N(N − 1)

〈
N−1∑
y1=0

N−1∑
y2=0

y2 6=y1

I(x, y1)I(x + α, y2)

〉
− 〈I〉2. (B.29)

In (B.29), 〈 〉 indicates an average over all x in the fist term and an average over all

x and y in the second term. Sample plots of covariances measured for two images

are shown in Figures B.10-B.13.

When uncorrelated noise is added to the image, the center of the covariance

plot (corresponding to the variance of the noise) increases. However, the effect on
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Figure B.10: 1024 × 1024 grayscale
image of the Pentagon image from
http://sipi.usc.edu/database/.
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Figure B.11: Measured covariance of
the column projections of the image in
Figure B.10. The covariance in this
graph is calculated using circular shift-
ing.

the off-center values of the covariance function is much less pronounced. This effect

is shown pictorially in Figures B.14 and B.15. In fact, the off-peak values are similar

enough to suggest that the correlation structure for these images may be estimated

fairly accurately by low-pass filtering the measured covariance function of a noisy

image and estimating the peak using the slopes of the points z = −α through z = +α

where α represents an arbitrary but small value. This will allow the adaptive design

of a filter for a given image that will minimize registration errors. It may assist in

design a optimal filter to denoise the image.
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Figure B.12: 256 × 256 grayscale
aerial image of a chemical plant from
http://sipi.usc.edu/database/.
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Figure B.13: Measured covariance of
the column projections of the image in
Figure B.12. The covariance in this
graph is calculated using circular shift-
ing.
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Figure B.14: Measured covariance of
column projections of the pentagon im-
age with AWGN of σ = 100.
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Figure B.15: Measured covariance of
the column projections of the image in
Figure B.12 with AWGN of σ = 100.
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